Crossref journal-article
Elsevier BV
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research (78)
Bibliography

Sommer, N., Junne, T., Kalies, K.-U., Spiess, M., & Hartmann, E. (2013). TRAP assists membrane protein topogenesis at the mammalian ER membrane. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(12), 3104–3111.

Authors 5
  1. Nicole Sommer (first)
  2. Tina Junne (additional)
  3. Kai-Uwe Kalies (additional)
  4. Martin Spiess (additional)
  5. Enno Hartmann (additional)
References 58 Referenced 53
  1. 10.1016/j.sbi.2005.01.013 / Curr. Opin. Struct. Biol. / The signal recognition particle and its interactions during protein targeting by Halic (2005)
  2. 10.1146/annurev.cellbio.21.012704.133214 / Annu. Rev. Cell Dev. Biol. / Protein translocation by the Sec61/SecY channel by Osborne (2005)
  3. 10.1038/320634a0 / Nature / The signal sequence of nascent preprolactin interacts with the 54K polypeptide of the signal recognition particle by Kurzchalia (1986)
  4. 10.1083/jcb.91.2.557 / J. Cell Biol. / Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes by Walter (1981)
  5. 10.1261/rna.2040410 / RNA / Residues in SRP9/14 essential for elongation arrest activity of the signal recognition particle define a positively charged functional domain on one side of the protein by Mary (2010)
  6. 10.1083/jcb.95.2.470 / J. Cell Biol. / Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor by Gilmore (1982)
  7. 10.1038/297647a0 / Nature / Secretory protein translocation across membranes—the role of the ‘docking protein’ by Meyer (1982)
  8. 10.1083/jcb.103.4.1167 / J. Cell Biol. / The signal recognition particle receptor is a complex that contains two distinct polypeptide chains by Tajima (1986)
  9. 10.1016/S0092-8674(00)80669-8 / Cell / Role of Sec61alpha in the regulated transfer of the ribosome-nascent chain complex from the signal recognition particle to the translocation channel by Song (2000)
  10. 10.1016/0092-8674(92)90517-G / Cell / A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation by Görlich (1992)
  11. 10.1038/367654a0 / Nature / Evolutionary conservation of components of the protein translocation complex by Hartmann (1994)
  12. 10.1038/nature02218 / Nature / X-ray structure of a protein-conducting channel by van den Berg (2004)
  13. 10.1111/j.1432-1033.1993.tb17933.x / Eur. J. Biochem. / A tetrameric complex of membrane proteins in the endoplasmic reticulum by Hartmann (1993)
  14. 10.1038/328830a0 / Nature / A signal sequence receptor in the endoplasmic reticulum membrane by Wiedmann (1987)
  15. 10.1038/357047a0 / Nature / A protein of the endoplasmic reticulum involved early in polypeptide translocation by Görlich (1992)
  16. 10.1093/emboj/18.17.4804 / EMBO J. / Control of glycosylation of MHC class II-associated invariant chain by translocon-associated RAMP4 by Schröder (1999)
  17. 10.1074/jbc.275.19.14550 / J. Biol. Chem. / Mammalian Sec61 is associated with Sec62 and Sec63 by Meyer (2000)
  18. 10.1091/mbc.E12-03-0228 / Mol. Biol. Cell / Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation by Lakkaraju (2012)
  19. 10.1242/jcs.096727 / J. Cell Sci. / Different effects of Sec61α, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells by Lang (2012)
  20. 10.1111/j.1432-1033.1988.tb14150.x / Eur. J. Biochem. / Topogenic signals in integral membrane proteins by von Heijne (1988)
  21. 10.1073/pnas.86.15.5786 / Proc. Natl. Acad. Sci. U. S. A. / Predicting the orientation of eukaryotic membrane-spanning proteins by Hartmann (1989)
  22. 10.1016/S0021-9258(17)35269-9 / J. Biol. Chem. / Charged residues are major determinants of the transmembrane orientation of a signal-anchor sequence by Beltzer (1991)
  23. 10.1093/emboj/cdg361 / EMBO J. / Molecular mechanism of signal sequence orientation in the endoplasmic reticulum by Goder (2003)
  24. 10.1016/j.cell.2011.06.004 / Cell / Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome–Sec61 translocon complex by Devaraneni (2011)
  25. 10.1083/jcb.137.3.555 / J. Cell Biol. / Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain by Wahlberg (1997)
  26. 10.1002/j.1460-2075.1995.tb00321.x / EMBO J. / Transmembrane orientation of signal-anchor proteins is affected by the folding state but not the size of the N-terminal domain by Denzer (1995)
  27. 10.1016/j.jmb.2012.10.010 / J. Mol. Biol. / Orientation of internal signal-anchor sequences at the Sec61 translocon by Kocik (2012)
  28. 10.1083/jcb.200408188 / J. Cell Biol. / Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation by Cheng (2005)
  29. 10.1083/jcb.201207163 / J. Cell Biol. / A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function by Trueman (2012)
  30. 10.1091/mbc.E03-08-0599 / Mol. Biol. Cell / Sec61p contributes to signal sequence orientation according to the positive-inside rule by Goder (2004)
  31. 10.1091/mbc.E06-03-0200 / Mol. Biol. Cell / The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability by Junne (2006)
  32. 10.1074/jbc.M707219200 / J. Biol. Chem. / Mutations in the Sec61p channel affecting signal sequence recognition and membrane protein topology by Junne (2007)
  33. 10.1091/mbc.E10-01-0060 / Mol. Biol. Cell / The hydrophobic core of the Sec61 translocon defines the hydrophobicity threshold for membrane integration by Junne (2010)
  34. 10.1074/jbc.M113.473009 / J. Biol. Chem. / Sec62 protein mediates membrane insertion and orientation of moderately hydrophobic signal anchor proteins in the endoplasmic reticulum (ER) by Reithinger (2013)
  35. 10.1016/0092-8674(93)90483-7 / Cell / Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane by Görlich (1993)
  36. 10.1016/S1097-2765(00)80116-1 / Mol. Cell / Regulation of protein topology by trans-acting factors at the endoplasmic reticulum by Hegde (1998)
  37. 10.1038/343669a0 / Nature / Non-hydrophobic extracytoplasmic determinant of stop transfer in the prion protein by Yost (1990)
  38. 10.1126/science.279.5352.827 / Science / A transmembrane form of the prion protein in neurodegenerative disease by Hegde (1998)
  39. 10.1083/jcb.200210095 / J. Cell Biol. / Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane by Fons (2003)
  40. 10.1083/jcb.147.6.1195 / J. Cell Biol. / Stress-associated endoplasmic reticulum protein 1 (SERP1)/ribosome-associated membrane protein 4 (RAMP4) stabilizes membrane proteins during stress and facilitates subsequent glycosylation by Yamaguchi (1999)
  41. 10.1016/j.tcb.2003.11.001 / Trends Cell Biol. / A trip to the ER: coping with stress by Rutkowski (2004)
  42. 10.1038/nature03216 / Nature / Recognition of transmembrane helices by the endoplasmic reticulum translocon by Hessa (2005)
  43. 10.1083/jcb.105.2.633 / J. Cell Biol. / A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum by Deshaies (1987)
  44. 10.1002/j.1460-2075.1996.tb00492.x / EMBO J. / A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae by Finke (1996)
  45. 10.1016/j.exppara.2004.12.011 / Exp. Parasitol. / Entamoeba histolytica: intracellular distribution of the sec61alpha subunit of the secretory pathway and down-regulation by antisense peptide nucleic acids by Sánchez (2005)
  46. 10.1038/359744a0 / Nature / The E. coli ffh gene is necessary for viability and efficient protein export by Phillips (1992)
  47. 10.1083/jcb.109.6.3223 / J. Cell Biol. / Saccharomyces cerevisiae and Schizosaccharomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that in S. cerevisiae is essential for growth by Hann (1989)
  48. 10.1074/jbc.M207736200 / J. Biol. Chem. / RNA interference of signal peptide-binding protein SRP54 elicits deleterious effects and protein sorting defects in trypanosomes by Liu (2002)
  49. 10.1091/mbc.E04-03-0184 / Mol. Biol. Cell / Differential regulation of the TRAIL death receptors DR4 and DR5 by the signal recognition particle by Ren (2004)
  50. 10.1016/j.yexcr.2006.12.003 / Exp. Cell Res. / Inefficient targeting to the endoplasmic reticulum by the signal recognition particle elicits selective defects in post-ER membrane trafficking by Lakkaraju (2007)
  51. 10.1016/j.bbamem.2010.06.015 / Biochim. Biophys. Acta / Protein translocation across the ER membrane by Zimmermann (2011)
  52. 10.1083/jcb.141.4.887 / J. Cell Biol. / The beta subunit of the Sec61 complex facilitates cotranslational protein transport and interacts with the signal peptidase during translocation by Kalies (1998)
  53. 10.1083/jcb.134.1.25 / J. Cell Biol. / Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane by Voigt (1996)
  54. 10.1016/j.jmb.2005.02.053 / J. Mol. Biol. / Architecture of the ribosome-channel complex derived from native membranes by Menetret (2005)
  55. 10.1016/j.str.2008.05.003 / Structure / Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome by Ménétret (2008)
  56. 10.1016/j.str.2012.06.010 / Structure / Structure and 3D arrangement of endoplasmic reticulum membrane-associated ribosomes by Pfeffer (2012)
  57. 10.1016/0014-5793(89)81549-2 / FEBS Lett. / Photocrosslinking demonstrates proximity of a 34kDa membrane protein to different portions of preprolactin during translocation through the endoplasmic reticulum by Wiedmann (1989)
  58. 10.1016/j.tcb.2004.09.002 / Trends Cell Biol. / Membrane–protein integration and the role of the translocation channel by Rapoport (2004)
Dates
Type When
Created 11 years, 11 months ago (Sept. 4, 2013, 10:01 p.m.)
Deposited 3 years, 5 months ago (March 5, 2022, 10:20 a.m.)
Indexed 1 month ago (July 26, 2025, 5:21 a.m.)
Issued 11 years, 8 months ago (Dec. 1, 2013)
Published 11 years, 8 months ago (Dec. 1, 2013)
Published Print 11 years, 8 months ago (Dec. 1, 2013)
Funders 2
  1. Swiss National Science Foundation 10.13039/501100001711 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

    Region: Europe

    pri (Trusts, charities, foundations (both public and private))

    Labels10
    1. Schweizerischer Nationalfonds
    2. Swiss National Science Foundation
    3. Fonds National Suisse de la Recherche Scientifique
    4. Fondo Nazionale Svizzero per la Ricerca Scientifica
    5. Fonds National Suisse
    6. Fondo Nazionale Svizzero
    7. Schweizerische Nationalfonds
    8. SNF
    9. SNSF
    10. FNS
    Awards1
    1. 31003A-125423
  2. German Research Foundation 10.13039/501100001659 Deutsche Forschungsgemeinschaft

    Region: Europe

    gov (National government)

    Labels3
    1. German Research Association
    2. German Research Foundation
    3. DFG
    Awards1
    1. Ka1444/1-3

@article{Sommer_2013, title={TRAP assists membrane protein topogenesis at the mammalian ER membrane}, volume={1833}, ISSN={0167-4889}, url={http://dx.doi.org/10.1016/j.bbamcr.2013.08.018}, DOI={10.1016/j.bbamcr.2013.08.018}, number={12}, journal={Biochimica et Biophysica Acta (BBA) - Molecular Cell Research}, publisher={Elsevier BV}, author={Sommer, Nicole and Junne, Tina and Kalies, Kai-Uwe and Spiess, Martin and Hartmann, Enno}, year={2013}, month=dec, pages={3104–3111} }