Crossref journal-article
Elsevier BV
Applied Energy (78)
Bibliography

Jaguemont, J., Boulon, L., & Dubé, Y. (2016). A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Applied Energy, 164, 99–114.

Authors 3
  1. J. Jaguemont (first)
  2. L. Boulon (additional)
  3. Y. Dubé (additional)
References 143 Referenced 965
  1. {'year': '2002', 'series-title': 'Handbook of batteries', 'author': 'Linden', 'key': '10.1016/j.apenergy.2015.11.034_b0005'} / Handbook of batteries by Linden (2002)
  2. 10.1016/j.apenergy.2014.04.013 / Appl Energy / Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles by Capasso (2014)
  3. 10.1149/2.F03122if / Electrochem Soc Interface / A general discussion of Li Ion battery safety by Doughty (2012)
  4. 10.1109/TVT.2012.2208485 / IEEE Trans Veh Technol / Evaluation of energy storage system requirements for hybrid mining loaders by Lajunen (2012)
  5. {'year': '2011', 'series-title': 'Recycling of Li-Ion batteries', 'author': 'Gaines', 'key': '10.1016/j.apenergy.2015.11.034_b0025'} / Recycling of Li-Ion batteries by Gaines (2011)
  6. Veneri O, Ferraro L, Capasso C, Iannuzzi D. Charging infrastructures for EV: overview of technologies and issues. In: 2012 Electr. Syst. Aircraft, Railw. Sh. Propuls., Oct, 2012. p. 1–6.
  7. 10.1149/2.047304jes / J Electrochem Soc / Li-Ion cell operation at low temperatures by Ji (2013)
  8. 10.1016/S0378-7753(99)00470-X / J Power Sources / Low temperature electrolytes for Li-ion PVDF cells by Shiao (2000)
  9. 10.1016/S0013-4686(02)00620-5 / Electrochim Acta / Low temperature performance of graphite electrode in Li-ion cells by Zhang (2002)
  10. 10.1016/S1388-2481(02)00490-3 / Electrochem Commun / A new approach toward improved low temperature performance of Li-ion battery by Zhang (2002)
  11. 10.1016/S0378-7753(01)00722-4 / J Power Sources / Aging mechanism in Li ion cells and calendar life predictions by Broussely (2001)
  12. 10.1016/j.elecom.2011.07.014 / Electrochem Commun / Suppression of lithium deposition at sub-zero temperatures on graphite by surface modification by Gunawardhana (2011)
  13. 10.1016/j.jpowsour.2003.09.008 / J Power Sources / Aging of lithium-ion batteries by Sarre (2004)
  14. 10.1016/j.electacta.2013.03.147 / Electrochim Acta / Heating strategies for Li-ion batteries operated from subzero temperatures by Ji (2013)
  15. Song H, Jeong J, Lee B, Shin DH. Experimental study on the effects of pre-heating a battery in a low-temperature environment. In: Veh power propuls conf; 2012. p. 1198–201. (10.1109/VPPC.2012.6422509)
  16. 10.1016/j.jpowsour.2012.05.074 / J Power Sources / Experimental study of an air-cooled thermal management system for high capacity lithium–titanate batteries by Giuliano (2012)
  17. Bugga R, Smart M, Whitacre J, West W. Lithium Ion batteries for space applications. In: 2007 IEEE aerosp conf; 2007. p. 1–7. (10.1109/AERO.2007.352728)
  18. Jaguemont J, Boulon L, Dubé Y, Poudrier D. Low temperature discharge cycle tests for a lithium ion cell. In: Veh power propuls conf; 2014; p. 1–6. (10.1109/VPPC.2014.7007097)
  19. 10.1016/S0378-7753(01)00670-X / J Power Sources / New Li-ion electrolytes for low temperature applications by Herreyre (2001)
  20. {'key': '10.1016/j.apenergy.2015.11.034_b0100', 'article-title': 'Performance of low temperature electrolytes in experimental and prototype Li-ion cells', 'author': 'Smart', 'year': '1999', 'journal-title': 'Am Inst Aeronaut Astronaut'} / Am Inst Aeronaut Astronaut / Performance of low temperature electrolytes in experimental and prototype Li-ion cells by Smart (1999)
  21. 10.1016/S0378-7753(00)00578-4 / J Power Sources / Development of low temperature Li-ion electrolytes for NASA and DoD applications by Plichta (2001)
  22. 10.1016/j.jpowsour.2006.10.106 / J Power Sources / Electrochemical performance and kinetics of Li1+x(Co1/3Ni1/3Mn1/3)1−xO2 cathodes and graphite anodes in low-temperature electrolytes by Smart (2007)
  23. 10.1016/j.jpowsour.2006.01.045 / J Power Sources / Low operational temperature Li–CFx batteries using cathodes containing sub-fluorinated graphitic materials by Whitacre (2006)
  24. 10.1016/j.jpowsour.2006.10.038 / J Power Sources / Gel polymer electrolyte lithium-ion cells with improved low temperature performance by Smart (2007)
  25. 10.1016/S0378-7753(02)00618-3 / J Power Sources / The low temperature performance of Li-ion batteries by Zhang (2003)
  26. 10.1016/S0378-7753(02)00272-0 / J Power Sources / Effect of propylene carbonate on the low temperature performance of Li-ion cells by Zhang (2002)
  27. 10.1149/1.1393622 / J Electrochem Soc / The limits of low-temperature performance of Li-ion cells by Huang (2000)
  28. 10.1016/j.electacta.2004.01.090 / Electrochim Acta / Design of electrolyte solutions for Li and Li-ion batteries: a review by Aurbach (2004)
  29. 10.1016/j.jpowsour.2008.01.028 / J Power Sources / Capacity fade analysis of a lithium ion cell by Zhang (2008)
  30. 10.1021/jp4111019 / J Phys Chem C / Chemistry, impedance, and morphology evolution in solid electrolyte interphase films during formation in lithium ion batteries by Lu (2014)
  31. 10.1016/j.electacta.2005.05.008 / Electrochim Acta / Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes by Abraham (2005)
  32. 10.1016/S0378-7753(01)00821-7 / J Power Sources / Studies on the cycle life of commercial lithium ion batteries during rapid charge – discharge cycling by Li (2001)
  33. 10.1016/j.jpowsour.2005.01.006 / J Power Sources / Ageing mechanisms in lithium-ion batteries by Vetter (2005)
  34. 10.1016/S0378-7753(97)02775-4 / J Power Sources / Real-life EV battery cycling on the test bench by Bogel (1998)
  35. 10.1016/j.jpowsour.2011.08.067 / J Power Sources / Calendar and PHEV cycle life aging of high-energy, lithium-ion cells containing blended spinel and layered-oxide cathodes by Belt (2011)
  36. 10.1016/S0378-7753(01)00783-2 / J Power Sources / An accelerated calendar and cycle life study of Li-ion cells by Bloom (2001)
  37. 10.1016/S0378-7753(02)00210-0 / J Power Sources / Calendar- and cycle-life studies of advanced technology development program generation 1 lithium-ion batteries by Wright (2002)
  38. 10.1016/S0378-7753(01)00701-7 / J Power Sources / Factors responsible for impedance rise in high power lithium ion batteries by Amine (2001)
  39. 10.1016/j.jpowsour.2012.02.068 / J Power Sources / Calendar aging of a graphite/LiFePO4 cell by Kassem (2012)
  40. 10.1016/j.apenergy.2013.09.003 / Appl Energy / Lithium iron phosphate based battery – assessment of the aging parameters and development of cycle life model by Omar (2014)
  41. 10.1016/j.jpowsour.2013.11.080 / J Power Sources / Electrochemical characterization and post-mortem analysis of aged LiMn2O4–Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion batteries. Part I: Cycle aging by Stiaszny (2014)
  42. 10.1016/j.apenergy.2014.04.092 / Appl Energy / Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method by Ping (2014)
  43. Kohei Nunotani1 YK, Yoshida1 Fumiya. Development and performance evaluation of lithium iron phosphate battery with superior rapid charging performance -second report : evaluation of battery capacity. In: Veh power propuls conf; 2011. p. 4–7. (10.1109/VPPC.2011.6042998)
  44. 10.1016/S0378-7753(03)00029-6 / J Power Sources / Capacity fade study of lithium-ion batteries cycled at high discharge rates by Ning (2003)
  45. 10.1016/S0378-7753(03)00537-8 / J Power Sources / A capacity and power fade study of Li-ion cells during life cycle testing by Belt (2003)
  46. 10.1016/S0378-7753(03)00351-3 / J Power Sources / Characterization of high-power lithium-ion cells during constant current cycling by Shim (2003)
  47. 10.1016/j.jpowsour.2009.08.045 / J Power Sources / Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests by Kötz (2010)
  48. 10.1016/j.matlet.2011.08.093 / Mater Lett / Solvothermal synthesis of LiFePO4/C nanopolyhedrons and microellipsoids and their performance in lithium-ion batteries by Gong (2012)
  49. 10.1016/j.jpowsour.2014.03.112 / J Power Sources / Temperature dependent ageing mechanisms in Lithium-ion batteries – a post-mortem study by Waldmann (2014)
  50. 10.1016/j.cplett.2009.12.033 / Chem Phys Lett / Direct in situ measurements of Li transport in Li-ion battery negative electrodes by Harris (2010)
  51. 10.1016/j.jpowsour.2013.12.022 / J Power Sources / Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior by Tippmann (2014)
  52. 10.1149/1.2221597 / J Electrochem Soc / Modeling of galvanostatic charge and discharge of the Lithium/Polymer/Insertion Cell by Doyle (1993)
  53. 10.1149/1.1393490 / J Electrochem Soc / Electrochemical thermal model of lithium polymer batteries by Song (2000)
  54. 10.1016/j.enconman.2013.05.040 / Energy Convers Manage / Electrochemical–thermal analysis of 18650 Lithium Iron Phosphate cell by Saw (2013)
  55. 10.1016/j.electacta.2015.06.015 / Electrochim Acta / A modified multiphysics model for Lithium-Ion batteries with a LixNi1/3Mn1/3Co1/3O2 electrode by Smekens (2015)
  56. 10.3390/su7078374 / Sustainability / Lithium-ion batteries: thermal behaviour investigation of unbalanced modules by Capron (2015)
  57. 10.1016/j.electacta.2014.08.115 / Electrochim Acta / Impact of tab location on large format lithium-ion pouch cell based on fully coupled tree-dimensional electrochemical-thermal modeling by Samba (2014)
  58. {'key': '10.1016/j.apenergy.2015.11.034_b0290', 'first-page': '287', 'article-title': 'Über die Abhängigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren', 'volume': '18', 'author': 'Peukert', 'year': '1897', 'journal-title': 'Elektrotechnische Zeitschrift (ETZ)'} / Elektrotechnische Zeitschrift (ETZ) / Über die Abhängigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren by Peukert (1897)
  59. Syracuse KC, Clark WDK. A statistical approach to domain performance modeling for oxyhalide primary lithium batteries. In: Twelfth annu batter conf appl adv; 1997. p. 163–70. (10.1109/BCAA.1997.574098)
  60. Pedram M, Wu Q. Design considerations for battery-powered electronics. In: Proc 36th ACM/IEEE conf des autom; 1999. p. 861–6. (10.1145/309847.310089)
  61. 10.1109/TCAPT.2002.803653 / IEEE Trans Compon Packag Technol / Dynamic lithium-ion battery model for system simulation by Gao (2002)
  62. González-longatt FM. Circuit based battery models: a review. In: Congr iberoam. estud ing eléctrica; 2006.
  63. Tremblay O, Dessaint L-A, Dekkiche A-I. A generic battery model for the dynamic simulation of hybrid electric vehicles. In: 2007 IEEE veh power propuls conf; Sep. 2007. p. 284–9. (10.1109/VPPC.2007.4544139)
  64. Tsang KM, Chan WL, Wong YK, Sun L. Lithium-ion battery models for computer simulation. In: 2010 IEEE int conf autom logist, vol. no. 2, Aug. 2010. p. 98–102. (10.1109/ICAL.2010.5585392)
  65. 10.1016/j.enconman.2014.07.011 / Energy Convers Manage / Electro-thermal characterization of Lithium Iron Phosphate cell with equivalent circuit modeling by Saw (2014)
  66. Daowd M, Omar N, Verbrugge B, Van Den Bosschev P, Van Mierlo J. Battery models parameter estimation based on matlab/simulink®. In: 25th world batter. hybrid fuel cell electr veh symp exhib batter, vol. 2; 2010. p. 5–9.
  67. 10.1149/1.2113792 / J Electrochem Soc / A general energy balance for battery systems by Bernardi (1985)
  68. 10.1149/1.2049974 / J Electrochem Soc / Thermal modeling of the lithium/polymer battery I. Discharge behavior of a single cell by Pals (1995)
  69. 10.1016/S0378-7753(99)00178-0 / J Power Sources / Thermal modeling and design considerations of lithium-ion batteries by Al Hallaj (1999)
  70. 10.1149/1.1393625 / J Electrochem Soc / Thermal-electrochemical modeling of battery systems by Gu (2000)
  71. 10.1149/1.1526512 / J Electrochem Soc / Analysis of electrochemical and thermal behavior of Li-ion cells by Srinivasan (2003)
  72. 10.1149/1.2817888 / J Electrochem Soc / Thermal model for a Li-ion cell by Kumaresan (2008)
  73. 10.1149/1.1377592 / J Electrochem Soc / Thermal model of cylindrical and prismatic lithium-ion cells by Hatchard (2001)
  74. {'key': '10.1016/j.apenergy.2015.11.034_b0370', 'first-page': '81', 'article-title': 'Abuse behavior of high-power, lithium- ion cells', 'volume': '113', 'author': 'Spotnitza', 'year': '2003', 'journal-title': 'J Electrochem Soc'} / J Electrochem Soc / Abuse behavior of high-power, lithium- ion cells by Spotnitza (2003)
  75. 10.1016/j.jpowsour.2009.10.090 / J Power Sources / Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application by Guo (2010)
  76. 10.1016/j.electacta.2013.11.113 / Electrochim Acta / Development of an advanced two-dimensional thermal model for large size lithium-ion pouch cells by Samba (2014)
  77. 10.1109/TVT.2010.2103333 / IEEE Trans Veh Technol / Novel predictive electric Li-ion battery model incorporating thermal and rate factor effects by Bhide (2011)
  78. 10.1016/j.apenergy.2014.06.016 / Appl Energy / Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles by Saw (2014)
  79. Erdinc O, Vural B, Uzunoglu M. A dynamic lithium-ion battery model considering the effects of temperature and capacity fading. In: 2009 int conf clean electr power, Jun. 2009. p. 383–6. (10.1109/ICCEP.2009.5212025)
  80. 10.1109/TVT.2012.2205169 / IEEE Trans Veh Technol / Multiphysical lithium-based battery model for use in state-of-charge determination by Watrin (2012)
  81. Feng X, Member S, Gooi HB, Member S, Chen SX. An improved lithium-ion battery model with temperature prediction considering entropy. In: IEEE PES innov smart grid technol eur; 2012. p. 1–8. (10.1109/ISGTEurope.2012.6465668)
  82. 10.1109/TEC.2006.874229 / IEEE Trans Energy Convers / Accurate electrical battery model capable of predicting runtime and I–V performance by Chen (2006)
  83. 10.1002/etep.1815 / Int Trans Electr Energy Syst / Optimization of an advanced battery model parameter minimization tool and development of a novel electrical model for lithium-ion batteries by Omar (2014)
  84. Tan YK, Mao JC, Tseng KJ. Modelling of battery temperature effect on electrical characteristics of Li-ion battery in hybrid electric vehicle. In: Power electron drive syst 2011 IEEE ninth int conf; 2011. p. 637–42. (10.1109/PEDS.2011.6147318)
  85. 10.1149/1.3239850 / J Electrochem Soc / Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents by Tasaki (2009)
  86. 10.1016/0378-7753(94)02038-5 / J Power Sources / Modeling the performance of rechargeable lithium-based cells: design correlations for limiting cases by Doyle (1995)
  87. 10.1149/1.1836921 / J Electrochem Soc / Comparison of modeling predictions with experimental data from plastic lithium ion cells by Doyle (1996)
  88. 10.1002/aic.690210103 / AIChE J / Porous-electrode theory with battery applications by Newman (1975)
  89. 10.1016/j.jpowsour.2013.12.101 / J Power Sources / Low-temperature charging of lithium-ion cells. Part II: Model reduction and application by Remmlinger (2014)
  90. 10.1016/j.apenergy.2008.11.021 / Appl Energy / State-of-charge estimation for lead-acid batteries based on dynamic open-circuit voltage by Ng (2009)
  91. 10.1016/j.jpowsour.2004.09.020 / J Power Sources / Support vector based battery state of charge estimator by Hansen (2005)
  92. 10.1109/TIE.2010.2043035 / IEEE Trans Ind Electron / State-of-charge estimation for lithium-ion batteries using neural networks and EKF by Charkhgard (2010)
  93. 10.1016/j.enconman.2006.06.023 / Energy Convers Manage / State of available capacity estimation for lead-acid batteries in electric vehicles using neural network by Shen (2007)
  94. 10.1016/S0893-6080(00)00098-8 / Neural Networks / Bayesian approach for neural networks—review and case studies by Lampinen (2001)
  95. 10.1016/j.eswa.2011.03.063 / Expert Syst Appl / Intelligent prognostics for battery health monitoring based on sample entropy by Widodo (2011)
  96. Drive A, Poll S, Field M, Goebel K, Christophersen J. An integrated approach to battery health monitoring. In: Autotestcon, 2007 IEEE; 2007. p. 646–53.
  97. 10.1016/j.jpowsour.2013.10.114 / J Power Sources / State of health estimation for lithium ion batteries based on charging curves by Guo (2014)
  98. {'issue': '12', 'key': '10.1016/j.apenergy.2015.11.034_b0490', 'first-page': '5910', 'volume': '28', 'author': 'Lam', 'year': '2013', 'journal-title': 'Practical capacity fading model for Li-ion battery cells in electric vehicles'} / Practical capacity fading model for Li-ion battery cells in electric vehicles by Lam (2013)
  99. 10.1016/j.jpowsour.2004.02.032 / J Power Sources / Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs by Plett (2004)
  100. 10.1016/j.jpowsour.2004.02.031 / J Power Sources / Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs by Plett (2004)
  101. 10.1016/j.electacta.2005.02.143 / Electrochim Acta / Fuzzy logic modeling of EIS measurements on lithium-ion batteries by Singh (2006)
  102. 10.1016/j.jpowsour.2014.05.033 / J Power Sources / State-of-health monitoring of 18650 4S packs with a single-point impedance diagnostic by Love (2014)
  103. Smith K, Kim G-H, Pesaran AA. Modeling of nonuniform degradation in large-format Li-ion batteries. In: 215th electrochem soc meet, vol. 25; 2009.
  104. {'issue': 'Oct', 'key': '10.1016/j.apenergy.2015.11.034_b0520', 'article-title': 'Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles', 'volume': '274', 'author': 'Martel', 'year': '2014', 'journal-title': 'J Power Sources'} / J Power Sources / Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles by Martel (2014)
  105. 10.1016/S0378-7753(03)00196-4 / J Power Sources / Correlation of arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells by Liaw (2003)
  106. 10.1016/j.electacta.2005.02.148 / Electrochim Acta / Characterizing aging effects of lithium ion batteries by impedance spectroscopy by Tröltzsch (2006)
  107. Liaw BY, Jungst RG, Doughty DH, Modeling capacity fade in lithium-ion cells. Electrochem. Soc. Inc., no. 808; 2003. p. 96821.
  108. 10.1109/TVT.2007.912176 / IEEE Trans Veh Technol / Battery management system based on battery nonlinear dynamics modeling by Szumanowski (2008)
  109. 10.1016/S0378-7753(02)00490-1 / J Power Sources / Simulation of capacity fade in lithium-ion batteries by Spotnitz (2003)
  110. 10.1016/j.jpowsour.2013.02.041 / J Power Sources / Model-based investigation of electric vehicle battery aging by means of vehicle-to-grid scenario simulations by Guenther (2013)
  111. 10.1016/j.jpowsour.2005.03.172 / J Power Sources / Main aging mechanisms in Li ion batteries by Broussely (2005)
  112. Haynes WM. CRC handbook of chemistry and physics; 2011.
  113. 10.1016/j.jpowsour.2008.06.017 / J Power Sources / Statistical methodology for predicting the life of lithium-ion cells via accelerated degradation testing by Thomas (2008)
  114. 10.1149/1.1644601 / J Electrochem Soc / Solvent diffusion model for aging of lithium-ion battery cells by Ploehn (2004)
  115. 10.1016/j.jpowsour.2007.07.021 / J Power Sources / Ageing behaviour of electrochemical double layer capacitors by Bohlen (2007)
  116. 10.1016/j.jpowsour.2012.05.012 / J Power Sources / Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data by Ecker (2012)
  117. 10.1149/1.3294790 / J Electrochem Soc / Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses by Liu (2010)
  118. Omar N, Firouz Y, Timmermans JM, Abdel M, Coosemans T, Van Den Bossche P. Lithium iron phosphate – assessment of calendar life and change of battery parameters. In: Veh power propuls conf; 2014. (10.1109/VPPC.2014.7007095)
  119. 10.1149/1.3126385 / J Electrochem Soc / Cycle-life characterization of automotive lithium-ion batteries with LiNiO2 cathode by Zhang (2009)
  120. 10.1016/S0378-7753(02)00196-9 / J Power Sources / Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications by Al-hallaj (2002)
  121. 10.1016/j.applthermaleng.2015.07.033 / Appl Therm Eng / Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model by Wang (2015)
  122. Zolot M, Pesaran AA, Mihalic M. Thermal evaluation of toyota prius battery pack, NREL Rep.; 2002. (10.4271/2002-01-1962)
  123. 10.1016/j.apenergy.2014.08.013 / Appl Energy / Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies by Wang (2014)
  124. 10.1016/S0378-7753(02)00197-0 / J Power Sources / Modeling thermal management of lithium-ion PNGV batteries by Nelson (2002)
  125. 10.1016/S0378-7753(02)00048-4 / J Power Sources / Heat dissipation design for lithium-ion batteries by Wu (2002)
  126. Pesaran AA. Battery thermal management in EVs and HEVs : issues and solutions. In: Adv automot batter conf; 2001.
  127. 10.1016/j.enconman.2014.10.015 / Energy Convers Manage / Investigation of power battery thermal management by using mini-channel cold plate by Huo (2015)
  128. Pesaran AA, Burch S, Keyser M. An approach for designing thermal management systems for electric and hybrid vehicle battery packs preprint. In: Fourth veh therm manag syst conf exhib, no. January; 1999.
  129. 10.1016/j.enconman.2015.06.056 / Energy Convers Manage / Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery by Zhao (2015)
  130. 10.1016/j.apenergy.2014.07.024 / Appl Energy / Numerical investigation of thermal behaviors in lithium-ion battery stack discharge by Liu (2014)
  131. 10.1016/j.enconman.2012.08.014 / Energy Convers. Manage / Experimental investigation on thermal management of electric vehicle battery with heat pipe by Rao (2013)
  132. Jang J, Rhi S. Battery thermal management system of future electric vehicles with loop thermosyphon. In: US-Korea conf sci technol entrep; 2010. p. 2.
  133. 10.1016/j.jpowsour.2003.09.070 / J Power Sources / Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter by Khateeb (2004)
  134. 10.1149/1.1393888 / J Electrochem Soc / A novel thermal management system for EV batteries using phase change material (PCM) by AlHallai (2000)
  135. 10.1016/j.apenergy.2013.08.026 / Appl Energy / A review of phase change materials for vehicle component thermal buffering by Jankowski (2014)
  136. 10.1016/j.jpowsour.2004.09.033 / J Power Sources / Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation by Khateeb (2005)
  137. 10.1016/j.jpowsour.2009.06.074 / J Power Sources / An alternative cooling system to enhance the safety of Li-ion battery packs by Kizilel (2009)
  138. Chevrolet. 2012 Chevrolet volt owner manual; 2012.
  139. 10.1016/j.jpowsour.2012.07.088 / J Power Sources / Proton exchange membrane fuel cells cold startup global strategy for fuel cell plug-in hybrid electric vehicle by Henao (2012)
  140. 10.1016/j.jpowsour.2003.10.014 / J Power Sources / HEV battery heating using AC currents by Stuart (2004)
  141. 10.1016/S0378-7753(02)00200-8 / J Power Sources / Battery thermal models for hybrid vehicle simulations by Pesaran (2002)
  142. Cosley MR, Garcia MP. Battery thermal management system. In: Proc INTELEC 26th annu int telecommun energy conf; 2004. p. 38–45. (10.1109/INTLEC.2004.1401442)
  143. 10.1016/j.rser.2011.07.096 / Renew Sustain Energy Rev / A review of power battery thermal energy management by Rao (2011)
Dates
Type When
Created 9 years, 8 months ago (Dec. 18, 2015, 1:04 a.m.)
Deposited 2 months, 3 weeks ago (May 31, 2025, 5:12 p.m.)
Indexed 4 hours, 42 minutes ago (Aug. 22, 2025, 12:54 a.m.)
Issued 9 years, 6 months ago (Feb. 1, 2016)
Published 9 years, 6 months ago (Feb. 1, 2016)
Published Print 9 years, 6 months ago (Feb. 1, 2016)
Funders 0

None

@article{Jaguemont_2016, title={A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures}, volume={164}, ISSN={0306-2619}, url={http://dx.doi.org/10.1016/j.apenergy.2015.11.034}, DOI={10.1016/j.apenergy.2015.11.034}, journal={Applied Energy}, publisher={Elsevier BV}, author={Jaguemont, J. and Boulon, L. and Dubé, Y.}, year={2016}, month=feb, pages={99–114} }