Crossref
journal-article
Elsevier BV
Acta Materialia (78)
Authors
3
- Joshua A. Gomberg (first)
- Andrew J. Medford (additional)
- Surya R. Kalidindi (additional)
References
65
Referenced
50
{'year': '2015', 'series-title': 'Hierarchical Materials Informatics: Novel Analytics for Materials Data', 'author': 'Kalidindi', 'key': '10.1016/j.actamat.2017.05.009_bib1'}
/ Hierarchical Materials Informatics: Novel Analytics for Materials Data by Kalidindi (2015)10.1016/j.scriptamat.2013.08.032
/ Scr. Mater. / Materials genomics: from CALPHAD to flight by Olson (2014)10.1126/science.277.5330.1237
/ Science / Computational design of hierarchically structured materials by Olson (1997){'year': '2009', 'series-title': 'Integrated Design of Multiscale, Multifunctional Materials and Products', 'author': 'McDowell', 'key': '10.1016/j.actamat.2017.05.009_bib4'}
/ Integrated Design of Multiscale, Multifunctional Materials and Products by McDowell (2009){'key': '10.1016/j.actamat.2017.05.009_bib5', 'series-title': '23rd Advanced Aerospace Materials and Processes (AeroMat) Conference and Exposition, Asm', 'article-title': 'Materials genome initiative for global competitiveness', 'author': 'Ward', 'year': '2012'}
/ 23rd Advanced Aerospace Materials and Processes (AeroMat) Conference and Exposition, Asm / Materials genome initiative for global competitiveness by Ward (2012){'year': '2012', 'series-title': 'A\xa0National Strategic Plan for Advanced Manufacturing', 'author': 'Holdren', 'key': '10.1016/j.actamat.2017.05.009_bib6'}
/ A National Strategic Plan for Advanced Manufacturing by Holdren (2012){'year': '2012', 'series-title': 'Microstructure Sensitive Design for Performance Optimization', 'author': 'Adams', 'key': '10.1016/j.actamat.2017.05.009_bib7'}
/ Microstructure Sensitive Design for Performance Optimization by Adams (2012)10.1038/nature05545
/ Nature / The structure of suspended graphene sheets by Meyer (2007)10.1038/nmat4798
/ Nat. Mater. / High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography by Hruszkewycz (2017)10.1088/0965-0393/21/8/085010
/ Model. Simul. Mater. Sci. Eng. / A three-dimensional atomistic kinetic Monte Carlo study of dynamic solute-interface interaction by Wicaksono (2013)10.1155/2013/564272
/ Sci. World J. / Phase-field simulations at the atomic scale in comparison to molecular dynamics by Berghoff (2013)10.1016/j.actamat.2012.08.051
/ Acta Mater. / Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, molecular dynamics and phase-field simulations by Molnar (2012)10.1146/annurev.matsci.38.060407.130217
/ Annu. Rev. Mater. Res. / Combinatorial materials sciences: experimental strategies for accelerated knowledge discovery by Rajan (2008)10.1038/nmat3568
/ Nat. Mater. / The high-throughput highway to computational materials design by Curtarolo (2013)10.3389/fmats.2016.00019
/ Front. Mater. / Finding new perovskite halides via machine learning by Pilania (2016)10.1038/srep19375
/ Sci. Rep. / Machine learning bandgaps of double perovskites by Pilania (2016)10.1088/0957-4484/26/34/344006
/ Nanotechnology / Application of data science tools to quantify and distinguish between structures and models in molecular dynamics datasets by Kalidindi (2015){'key': '10.1016/j.actamat.2017.05.009_bib18', 'article-title': 'Microstructure-based knowledge systems for capturing process-structure evolution linkages', 'author': 'Brough', 'year': '2016', 'journal-title': 'Curr. Opin. Solid State Mater. Sci.'}
/ Curr. Opin. Solid State Mater. Sci. / Microstructure-based knowledge systems for capturing process-structure evolution linkages by Brough (2016)10.1016/j.actamat.2015.02.045
/ Acta Mater. / Structure–property linkages using a data science approach: application to a non-metallic inclusion/steel composite system by Gupta (2015)10.1007/s40192-017-0093-4
/ Integr. Mater. Manuf. Innov. / Extraction of process-structure evolution linkages from X-ray scattering measurements using dimensionality reduction and time series analysis by Brough (2017){'issue': '2', 'key': '10.1016/j.actamat.2017.05.009_bib21', 'first-page': '103', 'article-title': 'A\xa0novel framework for building materials knowledge systems', 'volume': '17', 'author': 'Kalidindi', 'year': '2010', 'journal-title': 'Comput. Mater. Con.'}
/ Comput. Mater. Con. / A novel framework for building materials knowledge systems by Kalidindi (2010)10.1016/j.actamat.2010.10.008
/ Acta Mater. / A new framework for computationally efficient structure–structure evolution linkages to facilitate high-fidelity scale bridging in multi-scale materials models by Fast (2011)10.1016/j.cad.2012.06.006
/ Computer-Aided Des. / Key computational modeling issues in integrated computational materials engineering by Panchal (2013)10.1007/s40192-017-0089-0
/ Integr. Mater. Manuf. Innov. / Materials knowledge systems in Python - a data science framework for accelerated development of hierarchical materials by Brough (2017)10.1016/j.actamat.2016.10.071
/ Acta Mater. / Extraction of reduced-order process-structure linkages from phase-field simulations by Yabansu (2017)10.1016/j.actamat.2015.09.047
/ Acta Mater. / Analytics for microstructure datasets produced by phase-field simulations by Steinmetz (2016)10.1186/s40192-016-0054-3
/ Integr. Mater. Manuf. Innov. / High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples by Weaver (2016)10.1016/j.actamat.2016.10.033
/ Acta Mater. / Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: application to dual-phase steels by Khosravani (2017)10.1016/j.actamat.2015.02.045
/ Acta Mater. / Structure-property linkages for non-metallic inclusions/steel composite system using a data science approach by Gupta (2015)10.1016/j.jpowsour.2013.06.100
/ J. Power Sources / A data-driven approach to establishing microstructure-property relationships in porous transport layers of polymer electrolyte fuel cells by CeCen (2014)10.1016/j.polymer.2014.03.045
/ Polymer / Dependence of mechanical properties on crystal orientation of semi-crystalline polyethylene structures by Dong (2014)10.1179/1743280414Y.0000000043
/ Int. Mater. Rev. / Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials by Kalidindi (2015)10.1016/j.ijplas.2010.02.008
/ Int. J. Plast. / A perspective on trends in multiscale plasticity by McDowell (2010)10.1146/annurev.matsci.32.111201.142017
/ Annu. Rev. Mater. Res. / Atomistic aspects of crack propagation in brittle materials: multimillion atom molecular dynamics simulations by Rountree (2002)10.4028/www.scientific.net/MSF.558-559.3
/ Mater. Sci. Forum, Trans. Tech. Publ. / Recent advances in the simulation of recrystallization and grain growth by Gottstein (2007)10.1103/PhysRevLett.98.146401
/ Phys. Rev. Lett. / Generalized neural-network representation of high-dimensional potential-energy surfaces by Behler (2007)10.1371/journal.pcbi.1003400
/ PLoS Comput. Biol. / Machine learning estimates of natural product conformational energies by Rupp (2014)10.1016/j.cpc.2016.05.010
/ Comput. Phys. Commun. / Amp: a modular approach to machine learning in atomistic simulations by Khorshidi (2016)10.1021/acs.jpcc.6b10908
/ J. Phys. Chem. C / Machine learning force fields: construction, validation, and outlook by Botu (2017)10.1103/PhysRevLett.68.2696
/ Phys. Rev. Lett. / Large-amplitude nonlinear motions in proteins by García (1992)10.1002/prot.340170408
/ Proteins Struct. Funct. Bioinforma. / Essential dynamics of proteins by Amadei (1993)10.1103/PhysRevLett.98.028102
/ Phys. Rev. Lett. / How complex is the dynamics of peptide folding? by Hegger (2007)10.1021/jp810659u
/ J. Phys. Chem. B / Deconstructing the native state: energy landscapes, function, and dynamics of globular proteins by Zhuravlev (2009)10.1073/pnas.0603553103
/ Proc. Natl. Acad. Sci. / Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction by Das (2006)10.1007/s10820-008-9100-6
/ Sci. Model. Simul. SMNS / Concurrent design of hierarchical materials and structures by McDowell (2008)10.1186/s40192-015-0040-1
/ Integr. Mater. Manuf. Innov. / Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals) by Tschopp (2015)10.1126/science.1086636
/ Science / A maximum in the strength of nanocrystalline copper by Schiøtz (2003)10.1002/adfm.201300891
/ Adv. Funct. Mater. / Scanning probe microscopy in US department of energy nanoscale science research centers: status, perspectives, and opportunities by Kalinin (2013)10.1039/b309577k
/ Chem. Commun. / Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions by Billinge (2004)10.1524/zkri.218.2.132.20664
/ Z. für Kristallogr. - Cryst. Mater. / Structural analysis of complex materials using the atomic pair distribution function — a practical guide by Proffen (2003)10.1038/nmat4395
/ Nat. Mater. / Big-deep-smart data in imaging for guiding materials design by Kalinin (2015)10.1038/nmat2114
/ Nat. Mater. / Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials by Jesse (2008){'author': 'Tschopp', 'key': '10.1016/j.actamat.2017.05.009_bib53'}
by Tschopp{'key': '10.1016/j.actamat.2017.05.009_bib54', 'article-title': 'Structures and energies of Sigma 3 asymmetric tilt grain boundaries in copper and aluminium', 'volume': '87', 'author': 'Tschopp', 'year': '2007', 'journal-title': 'Philos. Mag.'}
/ Philos. Mag. / Structures and energies of Sigma 3 asymmetric tilt grain boundaries in copper and aluminium by Tschopp (2007){'year': '2009', 'series-title': 'The Elements of Statistical Learning Data Mining, Inference, and Prediction', 'author': 'Hastie', 'key': '10.1016/j.actamat.2017.05.009_bib55'}
/ The Elements of Statistical Learning Data Mining, Inference, and Prediction by Hastie (2009)10.1103/PhysRevB.58.11085
/ Phys. Rev. B / Dislocation nucleation and defect structure during surface indentation by Kelchner (1998)10.1006/jcph.1995.1039
/ J. Comput. Phys. / Fast parallel algorithms for short-range molecular-dynamics by Plimpton (1995){'year': '1986', 'series-title': 'Density Estimation for Statistics and Data Analysis', 'author': 'Silverman', 'key': '10.1016/j.actamat.2017.05.009_bib58'}
/ Density Estimation for Statistics and Data Analysis by Silverman (1986)10.1103/PhysRevB.59.3393
/ Phys. Rev. B / Interatomic potentials for monoatomic metals from experimental data and ab initio calculations by Mishin (1999){'year': '2002', 'series-title': 'Principal Component Analysis', 'author': 'Jolliffe', 'key': '10.1016/j.actamat.2017.05.009_bib60'}
/ Principal Component Analysis by Jolliffe (2002){'key': '10.1016/j.actamat.2017.05.009_bib61', 'series-title': 'Grain Boundary Order/Disorder and Energy, Grain Boundaries: from Theory to Engineering', 'first-page': '93', 'author': 'Priester', 'year': '2013'}
/ Grain Boundary Order/Disorder and Energy, Grain Boundaries: from Theory to Engineering by Priester (2013)10.1103/PhysRevLett.50.1285
/ Phys. Rev. Lett. / Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals by Daw (1983)10.1103/PhysRevB.29.6443
/ Phys. Rev. B / Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals by Daw (1984)10.1080/01418618408244210
/ Philos. Mag. A / A simple empirical N-body potential for transition metals by Finnis (1984)10.1080/01418618808205184
/ Philos. Mag. A / Simulation of gold in the glue model by Ercolessi (1988)
Dates
Type | When |
---|---|
Created | 8 years, 3 months ago (May 23, 2017, 3:28 p.m.) |
Deposited | 3 years, 4 months ago (April 10, 2022, 9:40 a.m.) |
Indexed | 4 weeks, 1 day ago (Aug. 2, 2025, 1:16 a.m.) |
Issued | 8 years, 1 month ago (July 1, 2017) |
Published | 8 years, 1 month ago (July 1, 2017) |
Published Print | 8 years, 1 month ago (July 1, 2017) |
Funders
1
National Institute of Standards and Technology
10.13039/100000161
Region: Americas
gov (National government)
Labels
4
- U.S. National Institute of Standards and Technology
- National Institute for Standards and Technology
- U.S. Department of Commerce's National Institute of Standards and Technology
- NIST
Awards
1
- 70NANB14H191
@article{Gomberg_2017, title={Extracting knowledge from molecular mechanics simulations of grain boundaries using machine learning}, volume={133}, ISSN={1359-6454}, url={http://dx.doi.org/10.1016/j.actamat.2017.05.009}, DOI={10.1016/j.actamat.2017.05.009}, journal={Acta Materialia}, publisher={Elsevier BV}, author={Gomberg, Joshua A. and Medford, Andrew J. and Kalidindi, Surya R.}, year={2017}, month=jul, pages={100–108} }