Crossref journal-article
Elsevier BV
Mutation Research/Reviews in Mutation Research (78)
Bibliography

Chernoff, Y. O. (2001). Mutation processes at the protein level: is Lamarck back? Mutation Research/Reviews in Mutation Research, 488(1), 39–64.

Authors 1
  1. Yury O. Chernoff (first)
References 150 Referenced 78
  1. L. Dunn, A Short History of Genetics, McGraw-Hill, New York, 1965.
  2. A.H. Sturtevant, A History of Genetics, Harper & Row, New York, 1965.
  3. R. Olby, Origins of Mendelism, Schocken Books, New York, 1966.
  4. 10.1038/171737a0 / Nature / A structure of deoxyribose nucleic acid by Watson (1953)
  5. A.J.F. Griffith, J.H. Miller, D.T. Suzuki, R.C. Lewontin, W.M. Gelbart, An Introduction to Genetic Analysis, 7th Edition, Freeman, New York, 2000.
  6. 10.1073/pnas.53.2.275 / Proc. Natl. Acad. Sci. U.S.A. / Cytoplasmic inheritance of the organization of the cell cortex in Paramecium aurelia by Beisson (1965)
  7. 10.1073/pnas.74.3.1115 / Proc. Natl. Acad. Sci. U.S.A. / 180 Degrees rotation of ciliary rows and its morphogenetic implications in Tetrahymena pyriformis by Ng (1977)
  8. {'key': '10.1016/S1383-5742(00)00060-0_BIB8', 'first-page': '375', 'article-title': 'Cortical memory in Paramecium: a theoretical approach to the structural heredity', 'volume': '318', 'author': 'Hyver', 'year': '1995', 'journal-title': 'C. R. Acad. Sci.'} / C. R. Acad. Sci. / Cortical memory in Paramecium: a theoretical approach to the structural heredity by Hyver (1995)
  9. 10.1126/science.6801762 / Science / Novel proteinaceous infectious particles cause scrapie by Prusiner (1982)
  10. 10.1098/rstb.1994.0043 / Phil. Trans. R. Soc. Lond. Ser. B: Biol. Sci. / Molecular biology and genetics of prion diseases by Prusiner (1994)
  11. 10.1016/S0092-8674(00)81163-0 / Cell / Prion protein biology by Prusiner (1998)
  12. 10.1038/214764a0 / Nature / Does the agent of scrapie replicate without nucleic acid? by Alper (1967)
  13. 10.1038/2151043a0 / Nature / Self-replication and scrapie by Griffith (1967)
  14. 10.1038/nm0597-491 / Nature Med. / Human TSE disease — viral or protein only? by Chesebro (1997)
  15. 10.1126/science.7909169 / Science / Structural clues to prion replication by Cohen (1994)
  16. 10.1016/S0959-440X(97)80007-3 / Curr. Op. Struct. Biol. / The prion folding problem by Harrison (1997)
  17. 10.1016/1074-5521(95)90074-8 / Chem. Biol. / The chemistry of scrapie reaction: the “ice 9” metaphore by Lansbury (1995)
  18. 10.1016/0092-8674(83)90168-X / Cell / Scrapie prions aggregate to form amyloid-like birefringent rods by Prusiner (1983)
  19. 10.1016/0092-8674(85)90076-5 / Cell / Identification of prion amyloid filaments in scrapie-infected brain by DeArmond (1985)
  20. 10.1038/370471a0 / Nature / Cell-free formation of protease-resistant prion protein by Kocisko (1994)
  21. 10.1126/science.7909170 / Science / [URE3] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae by Wickner (1994)
  22. 10.1128/JB.106.2.519-522.1971 / J. Bacteriol. / Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast by Lacroute (1971)
  23. 10.1007/BF00341717 / Mol. Gen. Genet. / Genetical aspects of [URE3], a non-mitochondrial cytoplasmically inherited mutation in yeast by Aigle (1975)
  24. 10.1038/hdy.1965.65 / Heredity / Ψ, a cytoplasmic suppressor of super-suppressor in yeast by Cox (1965)
  25. 10.1002/yea.320040302 / Yeast / The Ψ factor of yeast: a problem in inheritance by Cox (1988)
  26. 10.1093/genetics/137.3.659 / Genetics / The dominant PNM2-mutation which eliminates the Ψ factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene by Doel (1994)
  27. 10.1093/genetics/137.3.671 / Genetics / The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae by Ter-Avanesyan (1994)
  28. 10.1126/science.270.5233.93 / Science / Prion-inducing domain of yeast Ure2p and protease-resistance of Ure2p in prion-containing cells by Masison (1995)
  29. 10.1073/pnas.96.4.1498 / Proc. Natl. Acad. Sci. U.S.A. / The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments by Edskes (1999)
  30. 10.1126/science.273.5275.622 / Science / Support for the prion hypothesis for inheritance of a phenotypic trait in yeast by Patino (1996)
  31. 10.1002/j.1460-2075.1996.tb00675.x / EMBO J. / Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor by Paushkin (1996)
  32. 10.1016/S0092-8674(00)80264-0 / Cell / Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of Saccharomyces cerevisiae by Glover (1997)
  33. 10.1073/pnas.94.13.6618 / Proc. Natl. Acad. Sci. U.S.A. / Prion-inducing domain 2–114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments by King (1997)
  34. 10.1126/science.283.5406.1339 / Science / Prion domain initiation of amyloid formation in vitro from native Ure2p by Taylor (1999)
  35. 10.1074/jbc.274.19.13666 / J. Biol. Chem. / Structural characterization of Saccharomyces cerevisiae prion-like protein Ure2 by Thual (1999)
  36. 10.1110/ps.9.3.440 / Protein Sci. / The prion domain of yeast Ure2p induces autocatalytic formation of amyloid fibers by a recombinant fusion protein by Schlumpberger (2000)
  37. 10.1126/science.289.5483.1317 / Science / Nucleated conformational conversion and the replication of conformational information by a prion determinant by Serio (2000)
  38. 10.1126/science.277.5324.381 / Science / In vitro propagation of the prion-like state of yeast Sup35 protein by Paushkin (1999)
  39. 10.1007/BF00351802 / Curr. Genet. / Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae by Chernoff (1993)
  40. 10.1093/genetics/144.4.1375 / Genetics / Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae by Derkatch (1996)
  41. 10.1126/science.289.5479.595 / Science / Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by in vitro-converted Sup35 protein by Sparrer (2000)
  42. 10.1074/jbc.274.3.1181 / J. Biol. Chem. / The yeast [PSI+] prion: making sense of nonsense by Liebman (1999)
  43. 10.1074/jbc.274.2.555 / J. Biol. Chem. / Prions of yeast and fungi: proteins as genetic material by Wickner (1999)
  44. R.B. Wickner, Y.O. Chernoff, Prions of yeast and fungi: [URE3], [PSI] and [Het-s] discovered as heritable traits, in: S.B. Prusiner (Ed.), Prion Biology and Diseases, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999, pp. 229–272.
  45. 10.1016/S0962-8924(99)01711-0 / Trends Cell Biol. / Protein-only inheritance in yeast: something to get [PSI+]-ched about by Serio (2000)
  46. 10.1126/science.284.5411.159 / Science / Phenotypic change caused by transcriptional bypass of uracil in nondividing cells by Viswanathan (1999)
  47. A. Viswanathan, J. Liu, P.W. Doetsch, E. coli polymerase bypass of DNA base damage: mutagenesis at the level of transcription, in: A.C. Find (Ed.), Molecular Strategies in Biological Evolution, The New York Academy of Sciences, New York, 1999; Annals 870, 386–389. (10.1111/j.1749-6632.1999.tb08909.x)
  48. 10.1126/science.3310230 / Science / The inheritance of epigenetic defects by Holliday (1987)
  49. 10.1007/BF00266934 / Mol. Gen. Genet. / Host-genotype and agent effects in scrapie incubation: change in allelic interaction with different strains of agent by Dickinson (1971)
  50. 10.1038/375698a0 / Nature / Non-genetic propagation of strain-specific properties of scrapie prion protein by Bessen (1995)
  51. 10.1046/j.1365-2958.2000.01761.x / Mol. Microbiol. / Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein by Chernoff (2000)
  52. 10.1093/emboj/19.3.324 / EMBO J. / Prion properties of the Sup35 protein of yeast Pichia methanolica by Kushnirov (2000)
  53. 10.1016/S0092-8674(00)81565-2 / Cell / Molecular basis of a yeast prion species barrier by Santoso (2000)
  54. P.A. Bailleul-Winslett, G.P. Newnam, R.D. Wegrzyn, Y.O. Chernoff, An anti-prion effect of the anticytoskeletal drug latrunculin A in yeast, Gene Expression (2000), in press. (10.3727/000000001783992650)
  55. 10.1093/genetics/98.4.691 / Genetics / Agents that cause a high frequency of genetic change from [psi+] to [psi−] in Saccharomyces cerevisiae by Tuite (1981)
  56. 10.1073/pnas.97.1.240 / Proc. Natl. Acad. Sci. U.S.A. / Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI+] of Saccharomyces cerevisiae by Eaglestone (2000)
  57. 10.1093/emboj/19.9.1942 / EMBO J. / Dependence and independence of [PSI+] and [PIN+]: a two-prion system in yeast? by Derkatch (2000)
  58. 10.1126/science.7754373 / Science / Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+] by Chernoff (1995)
  59. 10.1128/MCB.19.12.8103 / Mol. Cell. Biol. / Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone Ssb in formation, stability, and toxicity of the [PSI] prion by Chernoff (1999)
  60. 10.1007/s004120050300 / Chromosoma / Eukaryotic DNA polymerases in DNA replication and DNA repair by Burgers (1998)
  61. 10.1016/S0921-8777(98)00056-1 / Mutat. Res. / Eukaryotic mismatch repair: an update by Jiricny (1998)
  62. 10.1016/S0966-842X(98)01424-3 / Trends Microbiol. / Escherichia coli mutator genes by Horst (1999)
  63. Y.O. Chernoff, B. Ono, Dosage-dependent modifiers of psi-dependent omnipotent suppression in yeast, in: A.J.P. Brown, M.F. Tuite, J.E.G. McCarthy (Eds.), Protein Synthesis and Targeting in Yeast, NATO ASI Ser. H: Cell Biology, Vol. 71, Springer, Berlin, 1993, pp. 101–110. (10.1007/978-3-642-84921-3_10)
  64. 10.1038/353270a0 / Nature / Hsp104 is a highly conserved protein with two essential nucleotide-binding sites by Parsell (1991)
  65. 10.1016/0968-0004(96)10038-4 / Trends Biochem. / HSP100/Clp proteins: a common mechanism explains diverse functions by Schirmer (1996)
  66. 10.1126/science.2188365 / Science / Hsp104 required for induced thermotolerance by Sanchez (1990)
  67. 10.1002/j.1460-2075.1992.tb05295.x / EMBO J. / Hsp104 is required for tolerance to many forms of stress by Sanchez (1992)
  68. 10.1038/372475a0 / Nature / Protein disaggregation mediated by heat-shock protein Hsp104 by Parsell (1994)
  69. 10.1016/S0092-8674(00)81223-4 / Cell / Hsp104, Hsp70 and Hsp40: a novel chaperone system that rescues previously aggregated proteins by Glover (1998)
  70. 10.1128/jb.175.20.6484-6491.1993 / J. Bacteriol. / Genetic evidence for a functional relationship between Hsp104 and Hsp70 by Sanchez (1993)
  71. 10.1073/pnas.96.24.13732 / Proc. Natl. Acad. Sci. U.S.A. / Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network by Goloubinoff (1999)
  72. 10.1093/genetics/153.1.81 / Genetics / Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae by Bailleul (1999)
  73. 10.1016/S0960-9822(00)00167-6 / Curr. Biol. / Prion-like factors in yeast by Cox (1994)
  74. 10.1101/SQB.1995.060.01.050 / Cold Spring Harbor Symp. Quant. Biol. / The role of Hsp104 in stress tolerance and [PSI+] propagation in Saccharomyces cerevisiae by Lindquist (1995)
  75. 10.1016/S0966-842X(00)88979-9 / Trends Microbiol. / Response from Chernoff et al. [Re: R.B. Wickner, Prions of yeast and heat-shock protein 104: ‘coprion’ and cure] by Chernoff (1995)
  76. 10.1073/pnas.76.4.1952 / Proc. Natl. Acad. Sci. U.S.A. / Mutation of the non-Mendelian suppressor, psi+, in yeast by hypertonic media by Singh (1979)
  77. 10.1128/MCB.7.7.2568 / Mol. Cell. Biol. / Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae by Werner-Washburne (1987)
  78. 10.1128/MCB.19.2.1325 / Mol. Cell. Biol. / Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing by Newnam (1999)
  79. 10.1093/genetics/156.2.559 / Genetics / A role for cytosolic Hsp70 in yeast [PSI+] prion propagation and [PSI+] as a cellular stress by Jung (2000)
  80. 10.1242/jcs.110.13.1431 / J. Cell Sci. / Molecular chaperones and the cytoskeleton by Liang (1997)
  81. 10.1016/0092-8674(92)90269-I / Cell / The translation machinery and 70 kDa heat shock protein cooperate in protein synthesis by Nelson (1992)
  82. 10.1093/emboj/17.14.3981 / EMBO J. / The molecular chaperone Ssb from Saccharomyces cerevisiae is a component off the ribosome-nascent chain complex by Pfund (1998)
  83. 10.1016/0014-5793(94)00873-6 / FEBS Lett. / A 70-kDa heat shock cognate protein suppresses the defects caused by a proteasome mutation in Saccharomyces cerevisiae by Ohba (1994)
  84. 10.1016/S0014-5793(97)00535-8 / FEBS Lett. / Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast Saccharomyces cerevisiae by Ohba (1997)
  85. 10.1073/pnas.94.25.13938 / Proc. Natl. Acad. Sci. U.S.A. / Chaperone supervised conversion of prion protein to its protease-resistant form by DebBurman (1997)
  86. H. Moriyama, H.K. Edskes, R.B. Wickner, [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p, Mol. Cell. Biol. 20 (2000) 8916–8922. (10.1128/MCB.20.23.8916-8922.2000)
  87. 10.1083/jcb.122.3.635 / J. Cell. Biol. / Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae by Holtzman (1993)
  88. 10.1038/347494a0 / Nature / Identification of an actin-binding protein from Dictyostelium as elongation factor 1α by Yang (1990)
  89. 10.1002/jcb.240520204 / J. Cell. Biochem. / ABP50: an actin-binding elongation factor 1α from Dictyostelium discoideum by Edmonds (1993)
  90. 10.1046/j.1365-2443.1999.00279.x / Genes Cells / Overproduction of elongation factor 1alpha, an essential translational component, causes aberrant cell morphology by affecting the control of growth polarity in fission yeast by Suda (1999)
  91. 10.1093/oxfordjournals.jbchem.a022583 / J. Biochem. / Tetrahymena elongation factor-1 alpha is localized with calmodulin in the division furrow by Numata (2000)
  92. 10.1016/0378-1119(88)90223-5 / Gene / Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae by Kushnirov (1988)
  93. 10.1016/0022-2836(88)90301-4 / J. Mol. Biol. / Suf12 suppressor protein of yeast: a fusion protein related to the EF-1α family of elongation factors by Wilson (1988)
  94. 10.1093/genetics/147.2.507 / Genetics / Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae by Derkatch (1997)
  95. 10.1002/j.1460-2075.1995.tb00111.x / EMBO J. / The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae by Stansfield (1995)
  96. 10.1073/pnas.95.5.2400 / Proc. Natl. Acad. Sci. U.S.A. / Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the [PSI+] prion by Derkatch (1998)
  97. 10.1128/MCB.17.5.2798 / Mol. Cell Biol. / Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation by Paushkin (1997)
  98. 10.1017/S135583829998216X / RNA / C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids by Ebihara (1999)
  99. 10.1002/j.1460-2075.1995.tb00078.x / EMBO J. / Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3 by Zhouravleva (1995)
  100. 10.1073/pnas.120168697 / Proc. Natl. Acad. Sci. U.S.A. / A protein required for prion generation: [URE3] induction requires the Ras-regulated Mks1 protein by Edskes (2000)
  101. 10.1093/genetics/153.2.585 / Genetics / Mks1p is a regulator of nitrogen catabolism upstream of Ure2p in Saccharomyces cerevisiae by Edskes (1999)
  102. 10.1016/0300-9084(92)90086-T / Biochimie / Conservative system for dosage-dependent modulation of translational fidelity in eukaryotes by Chernoff (1992)
  103. 10.1111/j.1365-2958.1993.tb01159.x / Mol. Microbiol. / Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein by Ter-Avanesyan (1993)
  104. 10.1126/science.287.5453.661 / Science / Creating a protein-based element of inheritance by Li (2000)
  105. 10.1002/j.1460-2075.1989.tb08558.x / EMBO J. / A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells by Hoshino (1989)
  106. 10.1002/yea.320060603 / Yeast / Divergence and conservation of SUP2 (SUP35) gene of yeasts Pichia pinus and Saccharomyces cerevisiae by Kushnirov (1990)
  107. O. Jean-Jean, X. LeGoff, M. Philippe, Is there a human [psi]? C. R. Acad. Sci. Paris, Sciences de la vie/Life Sciences 319 (1996) 487–492.
  108. 10.1016/S0092-8674(00)81467-1 / Cell / A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion by De Pace (1998)
  109. {'key': '10.1016/S1383-5742(00)00060-0_BIB109', 'first-page': '427', 'article-title': 'Structural and functional similarity of Sup35p and Ure2p yeast proteins and mammalian prions', 'volume': '29', 'author': 'Kushnirov', 'year': '1995', 'journal-title': 'Mol. Biol. (Russ.)'} / Mol. Biol. (Russ.) / Structural and functional similarity of Sup35p and Ure2p yeast proteins and mammalian prions by Kushnirov (1995)
  110. 10.1099/0022-1317-75-11-2947 / J. Gen. Virol. / Transmissible mink encephalopathy species barrier effect between ferret and mink: PrP gene and protein analysis by Bartz (1994)
  111. 10.1098/rstb.1994.0036 / Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. / Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier by Bruce (1994)
  112. 10.1073/pnas.92.9.3923 / Proc. Natl. Acad. Sci. U.S.A. / Species specificity in the cell free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier by Kocisco (1995)
  113. 10.1016/S1097-2765(00)80412-8 / Mol. Cell / Rnq1: an epigenetic modifier of protein function in yeast by Sondheimer (2000)
  114. 10.1093/genetics/154.3.1053 / Genetics / Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae by Young (2000)
  115. 10.1073/pnas.94.18.9773 / Proc. Natl. Acad. Sci. U.S.A. / The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog by Coustou (1997)
  116. 10.1016/S0168-9525(98)01559-5 / Trends Genet. / Protein precipitation: a common etiology in neurodegenerative disorders? by Kakizuka (1998)
  117. 10.1073/pnas.96.18.9989 / Proc. Natl. Acad. Sci. U.S.A. / Amyloid diseases: abnormal protein aggregation in neurodegeneration by Koo (1999)
  118. 10.1146/annurev.med.51.1.543 / Ann. Rev. Med. / The genetics of the amyloidoses by Buxbaum (2000)
  119. 10.1007/s007020050002 / J. Neural. Trans. / Involvement of alpha-synuclein in Parkinson’s disease and other neurodegenerative disorders by Kruger (2000)
  120. 10.1146/annurev.neuro.23.1.217 / Ann. Rev. Neurosci. / Glutamine repeats and neurodegeneration by Zoghbi (2000)
  121. 10.1073/pnas.97.4.1589 / Proc. Natl. Acad. Sci. U.S.A. / Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins by Krobitsch (2000)
  122. 10.1073/pnas.140202897 / Proc. Natl. Acad. Sci. U.S.A. / Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils by Muchowski (2000)
  123. 10.1073/pnas.100107297 / Proc. Natl. Acad. Sci. U.S.A. / Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans by Satyal (2000)
  124. 10.1523/JNEUROSCI.19-23-10338.1999 / J. Neurosci. / Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease by Chai (1999)
  125. 10.1038/70532 / Nature Genet. / Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70 by Warrick (1999)
  126. 10.1126/science.287.5459.1837 / Science / Genetic suppression of polyglutamine toxicity in Drosophila by Kazemi-Esfarjani (2000)
  127. 10.1016/0165-1161(75)90046-1 / Mutat. Res. / Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test by Ames (1975)
  128. 10.1073/pnas.96.7.3590 / Proc. Natl. Acad. Sci. U.S.A. / Designing conditions for in vitro formation of amyloid protofilaments and fibrils by Chiti (1999)
  129. 10.1016/S0968-0004(99)01445-0 / Trends Biochem. Sci. / Protein misfolding, evolution and disease by Dobson (1999)
  130. 10.1006/jmbi.1995.0438 / J. Mol. Biol. / The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae by Bonetti (1995)
  131. {'key': '10.1016/S1383-5742(00)00060-0_BIB131', 'first-page': '1227', 'article-title': 'Nonsense-suppression by amplification of translation protein factor gene', 'volume': '301', 'author': 'Chernoff', 'year': '1988', 'journal-title': 'Doklady Akad. Nauk SSSR: Biol. Sci. (Russ.)'} / Doklady Akad. Nauk SSSR: Biol. Sci. (Russ.) / Nonsense-suppression by amplification of translation protein factor gene by Chernoff (1988)
  132. 10.1002/yea.320080702 / Yeast / Dosage-dependent translational suppression in yeast Saccharomyces cerevisiae by Chernoff (1992)
  133. 10.1093/genetics/128.3.513 / Genetics / Interactions of the yeast omnipotent suppressors SUP1 (SUP45) and SUP2 (SUP35) with non-Mendelian factors by Dagkesamanskaya (1991)
  134. 10.1093/emboj/18.7.1974 / EMBO J. / Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism by Eaglestone (1999)
  135. 10.1111/j.1365-2958.1989.tb01810.x / Mol. Microbiol. / Mistranslation induces the heat-shock response in the yeast Saccharomyces cerevisiae by Grant (1989)
  136. 10.1038/35035005 / Nature / A yeast prion provides a mechanism for genetic variation and phenotypic diversity by True (2000)
  137. M.A. Jensen, H. True, Y.O. Chernoff, S. Lindquist, Molecular population genetics and evolution of a prion-like protein in Saccharomyces cerevisiae, Genetics (2001), under revision. (10.1093/genetics/159.2.527)
  138. 10.1007/s002940050379 / Curr. Genet. / C-terminal truncation of the Sup35 protein increases the frequency of de novo generation of a prion-based [PSI+] determinant in Saccharomyces cerevisiae by Kochneva-Pervukhova (1998)
  139. 10.1073/pnas.76.1.391 / Proc. Natl. Acad. Sci. U.S.A. / Phase variation in Salmonella: genetic analysis of a recombinational switch by Silverman (1979)
  140. 10.1146/annurev.bi.55.070186.003123 / Ann. Rev. Biochem. / Biological catalysis by RNA by Cech (1986)
  141. 10.1126/science.288.5463.38 / Science / Was Lamarck just a little bit right? by Balter (2000)
  142. 10.1146/annurev.ge.25.120191.000245 / Ann. Rev. Genet. / The inheritance of acquired characteristics by Landman (1991)
  143. 10.1016/S1383-5742(99)00087-3 / Mutat. Res. / Lysenko and Stalin: commemorating the 50th anniversary of the August 1948 LAAAS Conference and the 100th anniversary of T.D. Lysenko’s birth, 29 September 1898 by Medvedev (2000)
  144. 10.1074/jbc.270.38.22535 / J. Biol. Chem. / Polymerization of 70-kDa heat shock protein by yeast DnaJ in ATP by King (1995)
  145. 10.1046/j.1432-1327.1999.00078.x / Eur. J. Biochem. / Aggregation of hsp70 and hsc70 in vivo is distinct and temperature-dependent and their chaperone function is directly related to non-aggregated forms by Angelidis (1999)
  146. 10.1093/emboj/18.23.6744 / EMBO J. / Hsp26: a temperature-regulated chaperone by Haslbeck (1999)
  147. 10.1126/science.289.5478.448 / Science / One sequence, two ribozymes: implications for the emergence of new ribozyme folds by Shultes (2000)
  148. 10.7124/bc.0003DD / Biopolym. Cells / Mobile genetics and forms of heritable changes in eukaryotes by Golubovsky (1995)
  149. {'key': '10.1016/S1383-5742(00)00060-0_BIB149', 'first-page': '16', 'article-title': 'Dynamic inheritance and epigenes', 'volume': '4', 'author': 'Golubovsky', 'year': '1997', 'journal-title': 'Priroda'} / Priroda / Dynamic inheritance and epigenes by Golubovsky (1997)
  150. 10.1038/385810a0 / Nature / Viable offspring derived from fetal and adult mammalian cells by Wilmut (1997)
Dates
Type When
Created 23 years, 1 month ago (July 25, 2002, 3:53 p.m.)
Deposited 4 years, 3 months ago (May 10, 2021, 8:07 p.m.)
Indexed 1 month, 2 weeks ago (July 16, 2025, 8:25 a.m.)
Issued 24 years, 6 months ago (March 1, 2001)
Published 24 years, 6 months ago (March 1, 2001)
Published Print 24 years, 6 months ago (March 1, 2001)
Funders 0

None

@article{Chernoff_2001, title={Mutation processes at the protein level: is Lamarck back?}, volume={488}, ISSN={1383-5742}, url={http://dx.doi.org/10.1016/s1383-5742(00)00060-0}, DOI={10.1016/s1383-5742(00)00060-0}, number={1}, journal={Mutation Research/Reviews in Mutation Research}, publisher={Elsevier BV}, author={Chernoff, Yury O.}, year={2001}, month=mar, pages={39–64} }