Crossref journal-article
Springer Science and Business Media LLC
Science China Materials (297)
Bibliography

Xiao, Y., Zhou, M., Liu, J., Xu, J., & Fu, L. (2019). Phase engineering of two-dimensional transition metal dichalcogenides. Science China Materials, 62(6), 759–775.

Authors 5
  1. Yao Xiao (first)
  2. Mengyue Zhou (additional)
  3. Jinglu Liu (additional)
  4. Jing Xu (additional)
  5. Lei Fu (additional)
References 125 Referenced 138
  1. Zeng M, Xiao Y, Liu J, et al. Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chem Rev, 2018, 118: 6236–6296 (10.1021/acs.chemrev.7b00633) / Chem Rev by M Zeng (2018)
  2. Yang H, Kim SW, Chhowalla M, et al. Structural and quantumstate phase transition in van der Waals layered materials. Nat Phys, 2017, 13: 931–937 (10.1038/nphys4188) / Nat Phys by H Yang (2017)
  3. Cai Z, Liu B, Zou X, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev, 2018, 118: 6091–6133 (10.1021/acs.chemrev.7b00536) / Chem Rev by Z Cai (2018)
  4. Li H, Li Y, Aljarb A, et al. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem Rev, 2018, 118: 6134–6150 (10.1021/acs.chemrev.7b00212) / Chem Rev by H Li (2018)
  5. Han GH, Duong DL, Keum DH, et al. Van der Waals metallic transition metal dichalcogenides. Chem Rev, 2018, 118: 6297–6336 (10.1021/acs.chemrev.7b00618) / Chem Rev by GH Han (2018)
  6. Tan C, Lai Z, Zhang H. Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials. Adv Mater, 2017, 29: 1701392 (10.1002/adma.201701392) / Adv Mater by C Tan (2017)
  7. Zhang X, Cheng H, Zhang H. Recent progress in the preparation, assembly, transformation, and applications of layer-structured nanodisks beyond graphene. Adv Mater, 2017, 29: 1701704 (10.1002/adma.201701704) / Adv Mater by X Zhang (2017)
  8. Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin twodimensional nanomaterials. Chem Rev, 2017, 117: 6225–6331 (10.1021/acs.chemrev.6b00558) / Chem Rev by C Tan (2017)
  9. Sun L, Zheng J. Optical visualization of MoS2 grain boundaries by gold deposition. Sci China Mater, 2018, 61: 1154–1158 (10.1007/s40843-018-9233-9) / Sci China Mater by L Sun (2018)
  10. Liu J, Cao H, Jiang B, et al. Newborn 2D materials for flexible energy conversion and storage. Sci China Mater, 2016, 59: 459–474 / Sci China Mater by J Liu (2016)
  11. Iannaccone G, Bonaccorso F, Colombo L, et al. Quantum engineering of transistors based on 2D materials heterostructures. Nat Nanotechnol, 2018, 13: 183–191 (10.1038/s41565-018-0082-6) / Nat Nanotechnol by G Iannaccone (2018)
  12. Ali MN, Xiong J, Flynn S, et al. Large, non-saturating magnetoresistance in WTe2. Nature, 2014, 514: 205–208 (10.1038/nature13763) / Nature by MN Ali (2014)
  13. Costanzo D, Jo S, Berger H, et al. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat Nanotechnol, 2016, 11: 339–344 (10.1038/nnano.2015.314) / Nat Nanotechnol by D Costanzo (2016)
  14. Xi X, Wang Z, Zhao W, et al. Ising pairing in superconducting NbSe2 atomic layers. Nat Phys, 2015, 12: 139–143 (10.1038/nphys3538) / Nat Phys by X Xi (2015)
  15. Costanzo D, Zhang H, Reddy BA, et al. Tunnelling spectroscopy of gate-induced superconductivity in MoS2. Nat Nanotechnol, 2018, 13: 483–488 (10.1038/s41565-018-0122-2) / Nat Nanotechnol by D Costanzo (2018)
  16. Sohn E, Xi X, He WY, et al. An unusual continuous paramagnetic- limited superconducting phase transition in 2D NbSe2. Nat Mater, 2018, 17: 504–508 (10.1038/s41563-018-0061-1) / Nat Mater by E Sohn (2018)
  17. Fei Z, Zhao W, Palomaki TA, et al. Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560: 336–339 (10.1038/s41586-018-0336-3) / Nature by Z Fei (2018)
  18. Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13: 289–293 (10.1038/s41565-018-0063-9) / Nat Nanotechnol by M Bonilla (2018)
  19. Wu S, Fatemi V, Gibson QD, et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science, 2018, 359: 76–79 (10.1126/science.aan6003) / Science by S Wu (2018)
  20. Tang S, Zhang C, Wong D, et al. Quantum spin Hall state in monolayer 1T’-WTe2. Nat Phys, 2017, 13: 683–687 (10.1038/nphys4174) / Nat Phys by S Tang (2017)
  21. Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem Soc Rev, 2015, 44: 2702–2712 (10.1039/C5CS00151J) / Chem Soc Rev by D Voiry (2015)
  22. Ma Y, Kuc A, Jing Y, et al. Two-dimensional Haeckelite NbS2: A diamagnetic high-mobility semiconductor with Nb4+ ions. Angew Chem Int Ed, 2017, 56: 10214–10218 (10.1002/anie.201702450) / Angew Chem Int Ed by Y Ma (2017)
  23. Ma X, Guo P, Yi C, et al. Raman scattering in the transition-metal dichalcogenides of 1T’−MoTe2, Td−MoTe2, and Td−WTe2. Phys Rev B, 2016, 94: 214105 (10.1103/PhysRevB.94.214105) / Phys Rev B by X Ma (2016)
  24. Shirodkar SN, Waghmare UV. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys Rev Lett, 2014, 112: 157601 (10.1103/PhysRevLett.112.157601) / Phys Rev Lett by SN Shirodkar (2014)
  25. Chhowalla M, Shin HS, Eda G, et al. The chemistry of twodimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5: 263–275 (10.1038/nchem.1589) / Nat Chem by M Chhowalla (2013)
  26. Wilson JA, Yoffe AD. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys, 1969, 18: 193–335 (10.1080/00018736900101307) / Adv Phys by JA Wilson (1969)
  27. Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113: 3766–3798 (10.1021/cr300263a) / Chem Rev by M Xu (2013)
  28. Ataca C, Şahin H, Ciraci S. Stable, single-layer MX2 transitionmetal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C, 2012, 116: 8983–8999 (10.1021/jp212558p) / J Phys Chem C by C Ataca (2012)
  29. Zhang X, Lai Z, Ma Q, et al. Novel structured transition metal dichalcogenide nanosheets. Chem Soc Rev, 2018, 47: 3301–3338 (10.1039/C8CS00094H) / Chem Soc Rev by X Zhang (2018)
  30. Wang X, Song Z, Wen W, et al. Potential 2D materials with phase transitions: structure, synthesis, and device applications. Adv Mater, 2018, 499: 1804682 / Adv Mater by X Wang (2018)
  31. Wang J, Wei Y, Li H, et al. Crystal phase control in two-dimensional materials. Sci China Chem, 2018, 61: 1227–1242 (10.1007/s11426-018-9326-y) / Sci China Chem by J Wang (2018)
  32. Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature, 2018, 556: 355–359 (10.1038/s41586-018-0008-3) / Nature by J Zhou (2018)
  33. Duerloo KAN, Li Y, Reed EJ. Structural phase transitions in twodimensional Mo- and W-dichalcogenide monolayers. Nat Commun, 2014, 5: 4214 (10.1038/ncomms5214) / Nat Commun by KAN Duerloo (2014)
  34. Cheng P, Sun K, Hu YH. Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett, 2016, 16: 572–576 (10.1021/acs.nanolett.5b04260) / Nano Lett by P Cheng (2016)
  35. Lin C, Zhu X, Feng J, et al. Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J Am Chem Soc, 2013, 135: 5144–5151 (10.1021/ja400041f) / J Am Chem Soc by C Lin (2013)
  36. Li LJ, O’Farrell ECT, Loh KP, et al. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature, 2016, 529: 185–189 (10.1038/nature16175) / Nature by LJ Li (2016)
  37. Chen P, Pai WW, Chan YH, et al. Emergence of charge density waves and a pseudogap in single-layer TiTe2. Nat Commun, 2017, 8: 516 (10.1038/s41467-017-00641-1) / Nat Commun by P Chen (2017)
  38. Li L, Fang X, Zhai T, et al. Electrical transport and high-performance photoconductivity in individual ZrS2 nanobelts. Adv Mater, 2010, 22: 4151–4156 (10.1002/adma.201001413) / Adv Mater by L Li (2010)
  39. Mleczko MJ, Zhang C, Lee HR, et al. HfSe2 and ZrSe2: Twodimensional semiconductors with native high-κ oxides. Sci Adv, 2017, 3: e1700481 / Sci Adv by MJ Mleczko (2017)
  40. Tsipas P, Tsoutsou D, Fragkos S, et al. Massless dirac fermions in ZrTe2 semimetal grown on InAs(111) by van der Waals epitaxy. ACS Nano, 2018, 12: 1696–1703 (10.1021/acsnano.7b08350) / ACS Nano by P Tsipas (2018)
  41. Fu L, Wang F, Wu B, et al. Van der Waals epitaxial growth of atomic layered HfS2 crystals for ultrasensitive near-infrared phototransistors. Adv Mater, 2017, 29: 1700439 (10.1002/adma.201700439) / Adv Mater by L Fu (2017)
  42. Mangelsen S, Naumov PG, Barkalov OI, et al. Large nonsaturating magnetoresistance and pressure-induced phase transition in the layered semimetal HfTe2. Phys Rev B, 2017, 96: 205148 (10.1103/PhysRevB.96.205148) / Phys Rev B by S Mangelsen (2017)
  43. Guo Y, Deng H, Sun X, et al. Modulation of metal and insulator states in 2D ferromagnetic VS2 by van der Waals interaction engineering. Adv Mater, 2017, 29: 1700715 (10.1002/adma.201700715) / Adv Mater by Y Guo (2017)
  44. Ji Q, Li C, Wang J, et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett, 2017, 17: 4908–4916 (10.1021/acs.nanolett.7b01914) / Nano Lett by Q Ji (2017)
  45. Li J, Zhao B, Chen P, et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv Mater, 2018, 30: 1801043 (10.1002/adma.201801043) / Adv Mater by J Li (2018)
  46. Wang X, Lin J, Zhu Y, et al. Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers. Nanoscale, 2017, 9: 16607–16611 (10.1039/C7NR05572B) / Nanoscale by X Wang (2017)
  47. Han JH, Kim HK, Baek B, et al. Activation of the basal plane in two dimensional transition metal chalcogenide nanostructures. J Am Chem Soc, 2018, 140: 13663–13671 (10.1021/jacs.8b05477) / J Am Chem Soc by JH Han (2018)
  48. Calandra M. Phonon-assisted magnetic mott-insulating state in the charge density wave phase of single-layer 1T NbSe2. Phys Rev Lett, 2018, 121: 026401 (10.1103/PhysRevLett.121.026401) / Phys Rev Lett by M Calandra (2018)
  49. Yoshida M, Ye J, Zhang Y, et al. Extended polymorphism of twodimensional material. Nano Lett, 2017, 17: 5567–5571 (10.1021/acs.nanolett.7b02374) / Nano Lett by M Yoshida (2017)
  50. Wang X, Liu H, Wu J, et al. Chemical growth of 1T-TaS2 monolayer and thin films: robust charge density wave transitions and high bolometric responsivity. Adv Mater, 2018, 30: 1800074 (10.1002/adma.201800074) / Adv Mater by X Wang (2018)
  51. Shi J, Chen X, Zhao L, et al. Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-densitywave order. Adv Mater, 2018, 30: 1804616 (10.1002/adma.201804616) / Adv Mater by J Shi (2018)
  52. Miller DC, Mahanti SD, Duxbury PM. Charge density wave states in tantalum dichalcogenides. Phys Rev B, 2018, 97: 045133 (10.1103/PhysRevB.97.045133) / Phys Rev B by DC Miller (2018)
  53. Fu L, Sun Y, Wu N, et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano, 2016, 10: 2063–2070 (10.1021/acsnano.5b06254) / ACS Nano by L Fu (2016)
  54. Acerce M, Voiry D, Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol, 2015, 10: 313–318 (10.1038/nnano.2015.40) / Nat Nanotechnol by M Acerce (2015)
  55. Tongay S, Zhou J, Ataca C, et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett, 2012, 12: 5576–5580 (10.1021/nl302584w) / Nano Lett by S Tongay (2012)
  56. Yu Y, Nam GH, He Q, et al. High phase-purity 1T’-MoS2- and 1T’-MoSe2-layered crystals. Nat Chem, 2018, 10: 638–643 (10.1038/s41557-018-0035-6) / Nat Chem by Y Yu (2018)
  57. Sung JH, Heo H, Si S, et al. Coplanar semiconductor–metal circuitry defined on few-layer MoTe2via polymorphic heteroepitaxy. Nat Nanotechnol, 2017, 12: 1064–1070 (10.1038/nnano.2017.161) / Nat Nanotechnol by JH Sung (2017)
  58. Zhang Q, Xiao Y, Zhang T, et al. Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides. Chem Mater, 2017, 29: 4641–4644 (10.1021/acs.chemmater.6b05065) / Chem Mater by Q Zhang (2017)
  59. Deng K, Wan G, Deng P, et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat Phys, 2016, 12: 1105–1110 (10.1038/nphys3871) / Nat Phys by K Deng (2016)
  60. Gao Y, Liu Z, Sun DM, et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat Commun, 2015, 6: 8569 (10.1038/ncomms9569) / Nat Commun by Y Gao (2015)
  61. Wang QH, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7: 699–712 (10.1038/nnano.2012.193) / Nat Nanotechnol by QH Wang (2012)
  62. Ma Y, Liu B, Zhang A, et al. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano, 2015, 9: 7383–7391 (10.1021/acsnano.5b02399) / ACS Nano by Y Ma (2015)
  63. Zheng F, Cai C, Ge S, et al. On the quantum spin hall gap of monolayer 1T’-WTe2. Adv Mater, 2016, 28: 4845–4851 (10.1002/adma.201600100) / Adv Mater by F Zheng (2016)
  64. Wang Y, Liu E, Liu H, et al. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat Commun, 2016, 7: 13142 (10.1038/ncomms13142) / Nat Commun by Y Wang (2016)
  65. Tongay S, Sahin H, Ko C, et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat Commun, 2014, 5: 3252 (10.1038/ncomms4252) / Nat Commun by S Tongay (2014)
  66. Zhong HX, Gao S, Shi JJ, et al. Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS2 and ReSe2. Phys Rev B, 2015, 92: 115438 (10.1103/PhysRevB.92.115438) / Phys Rev B by HX Zhong (2015)
  67. Miró P, Ghorbani-Asl M, Heine T. Two dimensional materials beyond MoS2: Noble-transition-metal dichalcogenides. Angew Chem Int Ed, 2014, 53: 3015–3018 (10.1002/anie.201309280) / Angew Chem Int Ed by P Miró (2014)
  68. Zhao Y, Qiao J, Yu Z, et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv Mater, 2017, 29: 1604230 (10.1002/adma.201604230) / Adv Mater by Y Zhao (2017)
  69. Fu L, Hu D, Mendes RG, et al. Highly organized epitaxy of dirac semimetallic PtTe2 crystals with extrahigh conductivity and visible surface plasmons at edges. ACS Nano, 2018, 12: 9405–9411 (10.1021/acsnano.8b04540) / ACS Nano by L Fu (2018)
  70. Py MA, Haering RR. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can J Phys, 1983, 61: 76–84 (10.1139/p83-013) / Can J Phys by MA Py (1983)
  71. Yang D, Sandoval SJ, Divigalpitiya WMR, et al. Structure of single-molecular-layer MoS2. Phys Rev B, 1991, 43: 12053–12056 (10.1103/PhysRevB.43.12053) / Phys Rev B by D Yang (1991)
  72. Wang H, Lu Z, Xu S, et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc Natl Acad Sci USA, 2013, 110: 19701–19706 (10.1073/pnas.1316792110) / Proc Natl Acad Sci USA by H Wang (2013)
  73. Qi Y, Xu Q, Wang Y, et al. CO2-induced phase engineering: protocol for enhanced photoelectrocatalytic performance of 2D MoS2 nanosheets. ACS Nano, 2016, 10: 2903–2909 (10.1021/acsnano.6b00001) / ACS Nano by Y Qi (2016)
  74. Zhang J, Wu J, Guo H, et al. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv Mater, 2017, 29: 1701955 (10.1002/adma.201701955) / Adv Mater by J Zhang (2017)
  75. Yamaguchi H, Blancon JC, Kappera R, et al. Spatially resolved photoexcited charge-carrier dynamics in phase-engineered monolayer MoS2. ACS Nano, 2015, 9: 840–849 (10.1021/nn506469v) / ACS Nano by H Yamaguchi (2015)
  76. Kappera R, Voiry D, Yalcin SE, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014, 13: 1128–1134 (10.1038/nmat4080) / Nat Mater by R Kappera (2014)
  77. Silbernagel BG. Lithium intercalation complexes of layered transition metal dichalcogenides: An NMR survey of physical properties. Solid State Commun, 1975, 17: 361–365 (10.1016/0038-1098(75)90312-9) / Solid State Commun by BG Silbernagel (1975)
  78. Tan C, Luo Z, Chaturvedi A, et al. Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv Mater, 2018, 30: 1705509 (10.1002/adma.201705509) / Adv Mater by C Tan (2018)
  79. Tan C, Zhao W, Chaturvedi A, et al. Preparation of single-layer MoS2xSe2(1−x) and MoxW1−xS2 nanosheets with high-concentration metallic 1T phase. Small, 2016, 12: 1866–1874 (10.1002/smll.201600014) / Small by C Tan (2016)
  80. Zeng Z, Yin Z, Huang X, et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed, 2011, 50: 11093–11097 (10.1002/anie.201106004) / Angew Chem Int Ed by Z Zeng (2011)
  81. Lai Z, Chaturvedi A, Wang Y, et al. Preparation of 1T’-phase ReS2xSe2(1−x) (x= 0–1) nanodots for highly efficient electrocatalytic hydrogen evolution reaction. J Am Chem Soc, 2018, 140: 8563–8568 (10.1021/jacs.8b04513) / J Am Chem Soc by Z Lai (2018)
  82. Fan X, Xu P, Zhou D, et al. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett, 2015, 15: 5956–5960 (10.1021/acs.nanolett.5b02091) / Nano Lett by X Fan (2015)
  83. Cheng Y, Nie A, Zhang Q, et al. Origin of the phase transition in lithiated molybdenum disulfide. ACS Nano, 2014, 8: 11447–11453 (10.1021/nn505668c) / ACS Nano by Y Cheng (2014)
  84. Yan S, Qiao W, He X, et al. Enhancement of magnetism by structural phase transition in MoS2. Appl Phys Lett, 2015, 106: 012408 (10.1063/1.4905656) / Appl Phys Lett by S Yan (2015)
  85. Zhao W, Ribeiro RM, Eda G. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc Chem Res, 2015, 48: 91–99 (10.1021/ar500303m) / Acc Chem Res by W Zhao (2015)
  86. Yin Y, Han J, Zhang Y, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J Am Chem Soc, 2016, 138: 7965–7972 (10.1021/jacs.6b03714) / J Am Chem Soc by Y Yin (2016)
  87. Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett, 2011, 11: 5111–5116 (10.1021/nl201874w) / Nano Lett by G Eda (2011)
  88. Tan SJR, Abdelwahab I, Ding Z, et al. Chemical stabilization of 1T’ phase transition metal dichalcogenides with giant optical Kerr nonlinearity. J Am Chem Soc, 2017, 139: 2504–2511 (10.1021/jacs.6b13238) / J Am Chem Soc by SJR Tan (2017)
  89. Sun L, Yan X, Zheng J, et al. Layer-dependent chemically induced phase transition of two-dimensional MoS2. Nano Lett, 2018, 18: 3435–3440 (10.1021/acs.nanolett.8b00452) / Nano Lett by L Sun (2018)
  90. Wang L, Xu Z, Wang W, et al. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J Am Chem Soc, 2014, 136: 6693–6697 (10.1021/ja501686w) / J Am Chem Soc by L Wang (2014)
  91. Kan M, Wang JY, Li XW, et al. Structures and phase transition of a MoS2 monolayer. J Phys Chem C, 2014, 118: 1515–1522 (10.1021/jp4076355) / J Phys Chem C by M Kan (2014)
  92. Wang X, Shen X, Wang Z, et al. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano, 2014, 8: 11394–11400 (10.1021/nn505501v) / ACS Nano by X Wang (2014)
  93. Zhang R, Tsai IL, Chapman J, et al. Superconductivity in potassium- doped metallic polymorphs of MoS2. Nano Lett, 2016, 16: 629–636 (10.1021/acs.nanolett.5b04361) / Nano Lett by R Zhang (2016)
  94. Liu Q, Li X, He Q, et al. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: Applications for visible-light-driven photocatalytic hydrogen evolution. Small, 2015, 11: 5556–5564 (10.1002/smll.201501822) / Small by Q Liu (2015)
  95. Liu Q, Li X, Xiao Z, et al. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: the correlation between structure and electrical/optical properties. Adv Mater, 2015, 27: 4837–4844 (10.1002/adma.201502134) / Adv Mater by Q Liu (2015)
  96. Li Y, Duerloo KAN, Wauson K, et al. Structural semiconductorto- semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat Commun, 2016, 7: 10671 (10.1038/ncomms10671) / Nat Commun by Y Li (2016)
  97. Wang Y, Xiao J, Zhu H, et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550: 487–491 (10.1038/nature24043) / Nature by Y Wang (2017)
  98. Kim S, Song S, Park J, et al. Long-range lattice engineering of MoTe2 by a 2D electride. Nano Lett, 2017, 17: 3363–3368 (10.1021/acs.nanolett.6b05199) / Nano Lett by S Kim (2017)
  99. Kang Y, Najmaei S, Liu Z, et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv Mater, 2014, 26: 6467–6471 (10.1002/adma.201401802) / Adv Mater by Y Kang (2014)
  100. Enyashin AN, Yadgarov L, Houben L, et al. New route for stabilization of 1T-WS2 and MoS2 phases. J Phys Chem C, 2011, 115: 24586–24591 (10.1021/jp2076325) / J Phys Chem C by AN Enyashin (2011)
  101. Chen Y, Xi J, Dumcenco DO, et al. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano, 2013, 7: 4610–4616 (10.1021/nn401420h) / ACS Nano by Y Chen (2013)
  102. Lin YC, Dumcenco DO, Huang YS, et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat Nanotech, 2014, 9: 391–396 (10.1038/nnano.2014.64) / Nat Nanotech by YC Lin (2014)
  103. Suh J, Tan TL, Zhao W, et al. Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat Commun, 2018, 9: 199 (10.1038/s41467-017-02631-9) / Nat Commun by J Suh (2018)
  104. Title RS, Shafer MW. Band structure of the layered transitionmetal dichalcogenides: an experimental study by electron paramagnetic resonance on Nb-doped MoS2. Phys Rev Lett, 1972, 28: 808–810 (10.1103/PhysRevLett.28.808) / Phys Rev Lett by RS Title (1972)
  105. Zhu J, Wang Z, Yu H, et al. Argon plasma induced phase transition in monolayer MoS2. J Am Chem Soc, 2017, 139: 10216–10219 (10.1021/jacs.7b05765) / J Am Chem Soc by J Zhu (2017)
  106. Cho S, Kim S, Kim JH, et al. Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015, 349: 625–628 (10.1126/science.aab3175) / Science by S Cho (2015)
  107. Chow PK, Jacobs-Gedrim RB, Gao J, et al. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano, 2015, 9: 1520–1527 (10.1021/nn5073495) / ACS Nano by PK Chow (2015)
  108. Tosun M, Chan L, Amani M, et al. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano, 2016, 10: 6853–6860 (10.1021/acsnano.6b02521) / ACS Nano by M Tosun (2016)
  109. Park JC, Yun SJ, Kim H, et al. Phase-engineered synthesis of centimeter-scale 1T’- and 2H-molybdenum ditelluride thin films. ACS Nano, 2015, 9: 6548–6554 (10.1021/acsnano.5b02511) / ACS Nano by JC Park (2015)
  110. Keum DH, Cho S, Kim JH, et al. Bandgap opening in few-layered monoclinic MoTe2. Nat Phys, 2015, 11: 482–486 (10.1038/nphys3314) / Nat Phys by DH Keum (2015)
  111. Wang Z, Sun YY, Abdelwahab I, et al. Surface-limited superconducting phase transition on 1T-TaS2. ACS Nano, 2018, 12: 12619–12628 (10.1021/acsnano.8b07379) / ACS Nano by Z Wang (2018)
  112. Song S, Keum DH, Cho S, et al. Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett, 2016, 16: 188–193 (10.1021/acs.nanolett.5b03481) / Nano Lett by S Song (2016)
  113. Nayak AP, Pandey T, Voiry D, et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett, 2015, 15: 346–353 (10.1021/nl5036397) / Nano Lett by AP Nayak (2015)
  114. Voiry D, Goswami A, Kappera R, et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat Chem, 2014, 7: 45–49 (10.1038/nchem.2108) / Nat Chem by D Voiry (2014)
  115. Yang K, Wang X, Li H, et al. Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. Nanoscale, 2017, 9: 5102–5109 (10.1039/C7NR01015J) / Nanoscale by K Yang (2017)
  116. Kang K, Xie S, Huang L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520: 656–660 (10.1038/nature14417) / Nature by K Kang (2015)
  117. Najmaei S, Liu Z, Zhou W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater, 2013, 12: 754–759 (10.1038/nmat3673) / Nat Mater by S Najmaei (2013)
  118. Ju M, Liang X, Liu J, et al. Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals. Chem Mater, 2017, 29: 6095–6103 (10.1021/acs.chemmater.7b01984) / Chem Mater by M Ju (2017)
  119. Liu L, Wu J, Wu L, et al. Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers. Nat Mater, 2018, 17: 1108–1114 (10.1038/s41563-018-0187-1) / Nat Mater by L Liu (2018)
  120. Zhou L, Xu K, Zubair A, et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J Am Chem Soc, 2015, 137: 11892–11895 (10.1021/jacs.5b07452) / J Am Chem Soc by L Zhou (2015)
  121. Zhou L, Zubair A, Wang Z, et al. Synthesis of high-quality largearea homogenous 1T’ MoTe2 from chemical vapor deposition. Adv Mater, 2016, 28: 9526–9531 (10.1002/adma.201602687) / Adv Mater by L Zhou (2016)
  122. Yoo Y, DeGregorio ZP, Su Y, et al. In-plane 2H-1T’ MoTe2 homojunctions synthesized by flux-controlled phase engineering. Adv Mater, 2017, 29: 1605461 (10.1002/adma.201605461) / Adv Mater by Y Yoo (2017)
  123. Chen P, Pai WW, Chan YH, et al. Large quantum-spin-Hall gap in single-layer 1T’ WSe2. Nat Commun, 2018, 9: 2003 (10.1038/s41467-018-04395-2) / Nat Commun by P Chen (2018)
  124. Li S, Wang S, Tang DM, et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl Mater Today, 2015, 1: 60–66 (10.1016/j.apmt.2015.09.001) / Appl Mater Today by S Li (2015)
  125. Chen K, Chen Z, Wan X, et al. A simple method for synthesis of high-quality millimeter-scale 1T’ transition-metal telluride and near-field nanooptical properties. Adv Mater, 2017, 29: 1700704 (10.1002/adma.201700704) / Adv Mater by K Chen (2017)
Dates
Type When
Created 6 years, 6 months ago (Feb. 18, 2019, 5:54 p.m.)
Deposited 5 years, 6 months ago (Feb. 12, 2020, 2:21 p.m.)
Indexed 2 weeks, 2 days ago (Aug. 6, 2025, 9:22 a.m.)
Issued 6 years, 6 months ago (Feb. 13, 2019)
Published 6 years, 6 months ago (Feb. 13, 2019)
Published Online 6 years, 6 months ago (Feb. 13, 2019)
Published Print 6 years, 2 months ago (June 1, 2019)
Funders 0

None

@article{Xiao_2019, title={Phase engineering of two-dimensional transition metal dichalcogenides}, volume={62}, ISSN={2199-4501}, url={http://dx.doi.org/10.1007/s40843-018-9398-1}, DOI={10.1007/s40843-018-9398-1}, number={6}, journal={Science China Materials}, publisher={Springer Science and Business Media LLC}, author={Xiao, Yao and Zhou, Mengyue and Liu, Jinglu and Xu, Jing and Fu, Lei}, year={2019}, month=feb, pages={759–775} }