Crossref journal-article
Springer Science and Business Media LLC
Science China Materials (297)
Bibliography

Sun, L., & Zheng, J. (2018). Optical visualization of MoS2 grain boundaries by gold deposition. Science China Materials, 61(9), 1154–1158.

Authors 2
  1. Lulu Sun (first)
  2. Jian Zheng (additional)
References 28 Referenced 9
  1. Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9: 768–779 (10.1038/nnano.2014.207) / Nat Nanotechnol by G. Fiori (2014)
  2. Liu J, Cao H, Jiang B, et al. Newborn 2D materials for flexible energy conversion and storage. Sci China Mater, 2016, 59: 459–474 / Sci China Mater by J. Liu (2016)
  3. Cui J, Xu S, Wang L. Monolayer MoS2 decorated Cu7S4-Au nanocatalysts for sensitive and selective detection of mercury(II). Sci China Mater, 2017, 60: 352–360 (10.1007/s40843-017-9019-4) / Sci China Mater by J. Cui (2017)
  4. Kim IS, Sangwan VK, Jariwala D, et al. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano, 2014, 8: 10551–10558 (10.1021/nn503988x) / ACS Nano by I.S. Kim (2014)
  5. Wu Y, Wang D, Li Y. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci China Mater, 2016, 59: 938–996 (10.1007/s40843-016-5112-0) / Sci China Mater by Y. Wu (2016)
  6. Yang X, Li Q, Hu G, et al. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application. Sci China Mater, 2016, 59: 182–190 (10.1007/s40843-016-0130-1) / Sci China Mater by X. Yang (2016)
  7. Meng R, Jiang J, Liang Q, et al. Design of graphene-like gallium nitride and WS2/WSe2 nanocomposites for photocatalyst applications. Sci China Mater, 2016, 59: 1027–1036 (10.1007/s40843-016-5122-3) / Sci China Mater by R. Meng (2016)
  8. Lehockey EM, Brennenstuhl AM, Thompson I. On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking. Corrosion Sci, 2004, 46: 2383–2404 (10.1016/j.corsci.2004.01.019) / Corrosion Sci by E.M. Lehockey (2004)
  9. Zheng W, Feng W, Zhang X, et al. Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv Funct Mater, 2016, 26: 2648–2654 (10.1002/adfm.201504775) / Adv Funct Mater by W. Zheng (2016)
  10. Feng W, Zheng W, Cao W, et al. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv Mater, 2014, 26: 6587–6593 (10.1002/adma.201402427) / Adv Mater by W. Feng (2014)
  11. Koepke JC, Wood JD, Estrada D, et al. Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: a scanning tunneling microscopy study. ACS Nano, 2013, 7: 75–86 (10.1021/nn302064p) / ACS Nano by J.C. Koepke (2013)
  12. Huang PY, Ruiz-Vargas CS,van der Zande AM,et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 2011, 469: 389–392 (10.1038/nature09718) / Nature by P.Y. Huang (2011)
  13. Duong DL, Han GH, Lee SM,et al. Probing graphene grain boundaries with optical microscopy. Nature, 2012, 490: 235–239 (10.1038/nature11562) / Nature by D.L. Duong (2012)
  14. Yu SU, Cho Y, Park B, et al. Fast benchtop visualization of graphene grain boundaries using adhesive properties of defects. Chem Commun, 2013, 49: 5474–5476 (10.1039/c3cc42464b) / Chem Commun by S.U. Yu (2013)
  15. Cassereau L, DuFort CC, Weaver VM. Laying down the tracks. Nat Mater, 2012, 11: 490–492 (10.1038/nmat3345) / Nat Mater by L. Cassereau (2012)
  16. Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6: 147–150 (10.1038/nnano.2010.279) / Nat Nanotechnol by B. Radisavljevic (2011)
  17. Schmidt H, Wang S, Chu L, et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett, 2014, 14: 1909–1913 (10.1021/nl4046922) / Nano Lett by H. Schmidt (2014)
  18. Zhang J, Yu H, Chen W, et al. Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano, 2014, 8: 6024–6030 (10.1021/nn5020819) / ACS Nano by J. Zhang (2014)
  19. Lee YH, Zhang XQ, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater, 2012, 24: 2320–2325 (10.1002/adma.201104798) / Adv Mater by Y.H. Lee (2012)
  20. Jeon J, Jang SK, Jeon SM,et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale, 2015, 7: 1688–1695 (10.1039/C4NR04532G) / Nanoscale by J. Jeon (2015)
  21. Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6: 74–80 (10.1021/nn2024557) / ACS Nano by Z. Yin (2012)
  22. Li H, Zhang Q, Yap CCR, et al. From bulk to monolayer MoS2: evolution of raman scattering. Adv Funct Mater, 2012, 22: 1385–1390 (10.1002/adfm.201102111) / Adv Funct Mater by H. Li (2012)
  23. Windom BC, Sawyer WG, Hahn DW. A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems. Tribol Lett, 2011, 42: 301–310 (10.1007/s11249-011-9774-x) / Tribol Lett by B.C. Windom (2011)
  24. Holm EA, Olmsted DL, Foiles SM. Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni. Scripta Mater, 2010, 63: 905–908 (10.1016/j.scriptamat.2010.06.040) / Scripta Mater by E.A. Holm (2010)
  25. Alexander KC, Schuh CA. Exploring grain boundary energy landscapes with the activation-relaxation technique. Scripta Mater, 2013, 68: 937–940 (10.1016/j.scriptamat.2013.02.038) / Scripta Mater by K.C. Alexander (2013)
  26. Uesugi T, Higashi K. First-principles calculation of grain boundary energy and grain boundary excess free volume in aluminum: role of grain boundary elastic energy. J Mater Sci, 2011, 46: 4199–4205 (10.1007/s10853-011-5305-2) / J Mater Sci by T. Uesugi (2011)
  27. Zou X, Liu Y, Yakobson BI. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett, 2012, 13: 253–258 (10.1021/nl3040042) / Nano Lett by X. Zou (2012)
  28. Gunlycke D, Vasudevan S, White CT. Confinement, transport gap, and valley polarization in graphene from two parallel decorated line defects. Nano Lett, 2013, 13: 259–263 (10.1021/nl304015q) / Nano Lett by D. Gunlycke (2013)
Dates
Type When
Created 7 years, 5 months ago (March 9, 2018, 1:36 a.m.)
Deposited 6 years, 5 months ago (March 6, 2019, 8:03 p.m.)
Indexed 1 month, 4 weeks ago (July 2, 2025, 9:32 a.m.)
Issued 7 years, 5 months ago (March 7, 2018)
Published 7 years, 5 months ago (March 7, 2018)
Published Online 7 years, 5 months ago (March 7, 2018)
Published Print 6 years, 11 months ago (Sept. 1, 2018)
Funders 0

None

@article{Sun_2018, title={Optical visualization of MoS2 grain boundaries by gold deposition}, volume={61}, ISSN={2199-4501}, url={http://dx.doi.org/10.1007/s40843-018-9233-9}, DOI={10.1007/s40843-018-9233-9}, number={9}, journal={Science China Materials}, publisher={Springer Science and Business Media LLC}, author={Sun, Lulu and Zheng, Jian}, year={2018}, month=mar, pages={1154–1158} }