Crossref journal-article
Springer Science and Business Media LLC
Science China Materials (297)
Bibliography

Sun, Z., Liu, Q., Yao, T., Yan, W., & Wei, S. (2015). X-ray absorption fine structure spectroscopy in nanomaterials. Science China Materials, 58(4), 313–341.

Authors 5
  1. Zhihu Sun (first)
  2. Qinghua Liu (additional)
  3. Tao Yao (additional)
  4. Wensheng Yan (additional)
  5. Shiqiang Wei (additional)
References 109 Referenced 129
  1. Drexler KE. Engines of Creation: The Coming Era of Nanotechnology. New York: Doubleday, 1986 / Engines of Creation: The Coming Era of Nanotechnology by KE Drexler (1986)
  2. Nanoscience and nanotechnologies: opportunities and uncertainties. London: The Royal Society and The Royal Academy of Engineering, 2004
  3. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett, 1986, 56: 930–933 (10.1103/PhysRevLett.56.930) / Phys Rev Lett by G Binnig (1986)
  4. Binnig G, Rohrer H. Scanning tunneling microscopy. IBM J Res Dev, 1986, 30: 355–369 / IBM J Res Dev by G Binnig (1986)
  5. Koningsberger DC, Prins R. X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SE XAFS and XANES. New York: Wiley, 1988 / X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SE XAFS and XANES by DC Koningsberger (1988)
  6. Bunker G. A Practical Guide to X-ray Absorption Fine Structure Spectroscopy. Cambridge: Cambridge University Press, 2010 (10.1017/CBO9780511809194) / A Practical Guide to X-ray Absorption Fine Structure Spectroscopy by G Bunker (2010)
  7. Dent AJ. Development of time-resolved XAFS instrumentation for quick EXAFS and energy-dispersive EXAFS measurements on catalyst systems. Top Catal, 2002, 18: 27–35 (10.1023/A:1013826015970) / Top Catal by AJ Dent (2002)
  8. Pasquarello A, Petri I, Salmon PS, et al. First solvation shell of the Cu(II) aqua ion: evidence for fivefold coordination. Science, 2001, 291: 856–859 (10.1126/science.291.5505.856) / Science by A Pasquarello (2001)
  9. Zhang XW, Yan XJ, Zhou ZR, et al. Arsenic trioxide controls the fate of the PML-RAR alpha oncoprotein by directly bin ding PML. Science, 2010, 328: 240–243 (10.1126/science.1183424) / Science by XW Zhang (2010)
  10. Chen LX, Jager WJH, Jennings G, et al. Capturing a photoexcited molecular structure through time-domain X-ray absorption fines tructure. Science, 2001, 292: 262–264 (10.1126/science.1057063) / Science by LX Chen (2001)
  11. Bianconi A, Saini NL, Lanzara A, et al. Determination of the local lattice distortions in the CuO2 plane of La1.85Sr0.15CuO4. Phys Rev Lett, 1996, 76: 3412–3415 (10.1103/PhysRevLett.76.3412) / Phys Rev Lett by A Bianconi (1996)
  12. Fricke H. The K-characteristic absorption frequencies for the chemical elements magnesium to chromium. Phys Rev, 1920, 16: 202–215 (10.1103/PhysRev.16.202) / Phys Rev by H Fricke (1920)
  13. Hertz GZ. Absorption limits of the L-series. Zeitschrift Fur Physik, 1920, 3: 19–25 (10.1007/BF01356225) / Zeitschrift Fur Physik by GZ Hertz (1920)
  14. Kronig RD. On the theory of fine structure in the X-ray absorption spectra. Zeitschrift Fur Physik, 1931, 70: 317–323 (10.1007/BF01339581) / Zeitschrift Fur Physik by RD Kronig (1931)
  15. Kronig RD. On the theory of fine structure in the X-ray absorption spectrum 3. Zeitschrift Fur Physik, 1932, 75: 468–475 (10.1007/BF01342238) / Zeitschrift Fur Physik by RD Kronig (1932)
  16. Kronig RD. On the theory of fine structure in the X-ray absorption spectrum. 2. Zeitschrift Fur Physik, 1932, 75: 191–210 (10.1007/BF01341770) / Zeitschrift Fur Physik by RD Kronig (1932)
  17. Sayers DE, Stern EA, Lytle FW. New technique for investigating noncrystalline structures: Fourier analysis of extended X-ray-absorption fine structure. Phys Rev Lett, 1971, 27: 1204–1207 (10.1103/PhysRevLett.27.1204) / Phys Rev Lett by DE Sayers (1971)
  18. Rehr JJ, Stern EA, Martin RL, Davidson ER. Extended X-ray-absorption fine-structure amplitudes-Wave-function relaxation and chemical effects. Phys Rev B, 1978, 17: 560–565 (10.1103/PhysRevB.17.560) / Phys Rev B by JJ Rehr (1978)
  19. Bunker G. Application of the ratio method of exafs analysis to disordered-systems. Nucl Instrum Meth A, 1983, 207: 437–444 (10.1016/0167-5087(83)90655-5) / Nucl Instrum Meth A by G Bunker (1983)
  20. Tranquada JM, Ingalls R. Extended X-ray-absorption fine-structure study of anharmonicity in CuBr. Phys Rev B, 1983, 28: 3520–3528 (10.1103/PhysRevB.28.3520) / Phys Rev B by JM Tranquada (1983)
  21. Crozier ED, Seary AJ. Asymmetric effects in the extended X-ray absorption fine-structure analysis of solid and liquid zinc. Can J Phys, 1980, 58: 1388–1399 (10.1139/p80-179) / Can J Phys by ED Crozier (1980)
  22. Wei SQ, Oyanagi H, Liu WH, et al. Local structure of liquid gallium studied by X-ray absorption fine structure. J Non-Cryst Solids, 2000, 275: 160–168 (10.1016/S0022-3093(00)00251-9) / J Non-Cryst Solids by SQ Wei (2000)
  23. Lee PA, Pendry JB. Theory of extended X-ray absorption fine-structure. Phys Rev B, 1975, 11: 2795–2811 (10.1103/PhysRevB.11.2795) / Phys Rev B by PA Lee (1975)
  24. Rehr JJ, Albers RC. Scattering-matrix formulation of curvedwave multiple-scattering theory: application to X-ray-absorption fine-structure. Phys Rev B, 1990, 41: 8139–8149 (10.1103/PhysRevB.41.8139) / Phys Rev B by JJ Rehr (1990)
  25. Rehr JJ, Deleon JM, Zabinsky SI, Albers RC. Theoretical X-ray absorption fine-structure standards. J Am Chem Soc, 1991, 113: 5135–5140 (10.1021/ja00014a001) / J Am Chem Soc by JJ Rehr (1991)
  26. Rehr JJ, Albers RC. Theoretical approaches to X-ray absorption fine structure. Rev Mod Phys, 2000, 72: 621–654 (10.1103/RevModPhys.72.621) / Rev Mod Phys by JJ Rehr (2000)
  27. Fujikawa T, Yiwata N. A new approach to full multiple-scattering XAFS calculation. Surf Sci, 1996, 357: 60–64 (10.1016/0039-6028(96)00058-1) / Surf Sci by T Fujikawa (1996)
  28. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys Rev B, 1998, 58: 7565–7576 (10.1103/PhysRevB.58.7565) / Phys Rev B by AL Ankudinov (1998)
  29. Natoli CR, Misemer DK, Doniach S, Kutzler FW. First-principles calculation of X-ray absorption-edge structure in molecular clusters. Phys Rev A, 1980, 22: 1104–1108 (10.1103/PhysRevA.22.1104) / Phys Rev A by CR Natoli (1980)
  30. Binsted N. EXCURV98: CCLRC Daresbury Laboratory Computer Program. 1998; Available from: http://srs.dl.ac.uk/XRS/Computing/Programs/excurv97/intro.html / EXCURV98: CCLRC Daresbury Laboratory Computer Program by N Binsted (1998)
  31. Filipponi A, Di Cicco A, Natoli CR. X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I. Theory. Phys Rev B, 1995, 52: 15122–15134 (10.1103/PhysRevB.52.15122) / Phys Rev B by A Filipponi (1995)
  32. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J. WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Technische Universität Wien, 2001 / Karlheinz Schwarz, Technische Universität Wien by P Blaha (2001)
  33. Zhong WJ, He B, Li Z, Wei SQ. USTCXAFS 2.0 software packages (in Chinese). J Univ Sci Technol China, 2001, 31: 228–233 / J Univ Sci Technol China by WJ Zhong (2001)
  34. Baberschke K. Recent progress in low-Z SEXAFS. Phys B, 1989, 158: 19–24 (10.1016/0921-4526(89)90183-X) / Phys B by K Baberschke (1989)
  35. Magnan H, Chandesris D, Rossi G, et al. Determination of the local order in amorphous cobalt films. Phys Rev B, 1989, 40: 9989–9992 (10.1103/PhysRevB.40.9989) / Phys Rev B by H Magnan (1989)
  36. Heckmann O, Magnan H, Lefevre P, Chandesris D, Rehr JJ. Crystallographic structure of cobalt filsm on Cu(001): elastic-deformation to a tetragonal structure. Surf Sci, 1994, 312: 62–72 (10.1016/0039-6028(94)90803-6) / Surf Sci by O Heckmann (1994)
  37. Diaz-Moreno S. XAFS data collection: an integrated approach to delivering good data. J Synchrotron Rad, 2012, 19: 863–868 (10.1107/S090904951203854X) / J Synchrotron Rad by S Diaz-Moreno (2012)
  38. Stern EA, Kim K. Thickness effect on the extended-X-ray-absorption-fine-structure amplitude. Phys Rev B, 1981, 23: 3781–3787 (10.1103/PhysRevB.23.3781) / Phys Rev B by EA Stern (1981)
  39. Henke BL, Gullikson EM, Davis JC. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1–92. Atom Data Nucl Data Tables, 1993, 54: 181–342 (10.1006/adnd.1993.1013) / Atom Data Nucl Data Tables by BL Henke (1993)
  40. Chantler CT. Theoretical form-factor, attenuation and scattering tabulation for Z = 1–92 from E = 1–10 eV to E = 0.4–1.0 meV. J Phys Chem Ref Data, 1995, 24: 71–591 (10.1063/1.555974) / J Phys Chem Ref Data by CT Chantler (1995)
  41. Troger L, Arvanitis D, Baberschke K, et al. Full correction of the self-absorption in soft-fluorescence extended X-ray-absorption fine-structure. Phys Rev B, 1992, 46: 3283–3289 (10.1103/PhysRevB.46.3283) / Phys Rev B by L Troger (1992)
  42. Booth CH, Bridges F. Improved self-absorption correction for fluorescence measurements of extended X-ray absorption fine-structure. Phys Scr, 2005, T115: 202–204 (10.1238/Physica.Topical.115a00202) / Phys Scr by CH Booth (2005)
  43. Lytle FW, Greegor RB, Sandstrom DR, et al. Measurement of soft-X-ray absorption-spectra with a fluorescent ion-chamber detector. Nucl Instrum Meth A, 1984, 226: 542–548 (10.1016/0168-9002(84)90077-9) / Nucl Instrum Meth A by FW Lytle (1984)
  44. Oyanagi H, Fonne C, Gutknecht D, et al. Ge pixel array detector for high throughput X-ray spectroscopy. Nucl Instrum Meth A, 2003, 513: 340–344 (10.1016/j.nima.2003.08.059) / Nucl Instrum Meth A by H Oyanagi (2003)
  45. Oyanagi H, Sakamoto K, Shioda R, Kuwahara Y, Haga K. Geoverlayers on Si(001) studied by surface-extended X-ray-absorption fine structure. Phys Rev B, 1995, 52: 5824–5829 (10.1103/PhysRevB.52.5824) / Phys Rev B by H Oyanagi (1995)
  46. Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 2005, 437: 664–670 (10.1038/nature04165) / Nature by Y Yin (2005)
  47. Donega CD. Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev, 2011, 40: 1512–1546 (10.1039/C0CS00055H) / Chem Soc Rev by CD Donega (2011)
  48. Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev, 2010, 39: 1805–1834 (10.1039/b907301a) / Chem Soc Rev by C Vericat (2010)
  49. Xia YN, Cobley CM, Chen JY, Cho EC, Wang LV. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev, 2011, 40: 44–56 (10.1039/B821763G) / Chem Soc Rev by YN Xia (2011)
  50. Zhang P, Sham TK. X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Phys Rev Lett, 2003, 90: 245502 (10.1103/PhysRevLett.90.245502) / Phys Rev Lett by P Zhang (2003)
  51. Sanchez SI, Menard LD, Bram A, et al. The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on gamma-Al2O3. J Am Chem Soc, 2009, 131: 7040–7054 (10.1021/ja809182v) / J Am Chem Soc by SI Sanchez (2009)
  52. Small MW, Sanchez SI, Marinkovic NS, Frenkel AI, Nuzzo RG. Influence of adsorbates on the electronic structure, bond strain, and thermal properties of an alumina-supported Pt catalyst. ACS Nano, 2012, 6: 5583–5595 (10.1021/nn3015322) / ACS Nano by MW Small (2012)
  53. Jin RC. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale, 2010, 2: 343–362 (10.1039/B9NR00160C) / Nanoscale by RC Jin (2010)
  54. Li G, Jin RC. Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res, 2013, 46: 1749–1758 (10.1021/ar300213z) / Acc Chem Res by G Li (2013)
  55. Lu YZ, Chen W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev, 2012, 41: 3594–3623 (10.1039/c2cs15325d) / Chem Soc Rev by YZ Lu (2012)
  56. Spivey JJ, Krishna KS, Kumar C, et al. Synthesis, characterization, and computation of catalysts at the center for atomic-level catalyst design. J Phys Chem C, 2014, 118: 20043–20069 (10.1021/jp502556u) / J Phys Chem C by JJ Spivey (2014)
  57. Liu J, Krishna KS, Losovyj YB, et al. Ligand-stabilized and atomically precise gold nanocluster catalysis: a case study for correlating fundamental electronic properties with catalysis. Chem-Euro J, 2013, 19: 10201–10208 (10.1002/chem.201300600) / Chem-Euro J by J Liu (2013)
  58. Barrio L, Estrella M, Zhou G, et al. Unraveling the active site in copper-ceria systems for the water-gas shift reaction: in situ characterization of an inverse powder CeO2−x /CuO-Cu catalyst. J Phys Chem C, 2010, 114: 3580–3587 (10.1021/jp910342b) / J Phys Chem C by L Barrio (2010)
  59. Patlolla A, Carino EV, Ehrlich SN, Stavitski E, Frenkel AI. Application of operando XAS, XRD, and Raman spectroscopy for phase speciation in water gas shift reaction catalysts. ACS Catal, 2012, 2: 2216–2223 (10.1021/cs300414c) / ACS Catal by A Patlolla (2012)
  60. Oyanagi H, Sakamoto K, Shioda R, Sakamoto T. Ge epitaxial over-layers on Si(001) studied by surface-sensitive X-ray-absorption fine-structure: evidence for strain-induced surface rearrangement. J apan J Appl Phys, 1994, 33: 3545–3552 (10.1143/JJAP.33.3545) / J apan J Appl Phys by H Oyanagi (1994)
  61. Oyanagi H, Sakamoto K, Shioda R, Kuwahara Y, Haga K. Ge Overlayers on Si(001) studied by surface-extended X-ray-absorption fine-structure. Phys Rev B, 1995, 52: 5824–5829 (10.1103/PhysRevB.52.5824) / Phys Rev B by H Oyanagi (1995)
  62. Pearsall TP, Bevk J, Feldman LC, et al. Structurally induced optical-transitions in Ge-Si superlattices. Phys Rev Lett, 1987, 58: 729–732 (10.1103/PhysRevLett.58.729) / Phys Rev Lett by TP Pearsall (1987)
  63. Wei SQ, Oyanagi H, Sakamoto K, Takeda Y, Pearsall TP. Local structure of (Ge4Si4)5 monolayer strained-layer superlattice probed by fluorescence X-ray absorption fine structure. Phys Rev B, 2000, 62: 1883–1888 (10.1103/PhysRevB.62.1883) / Phys Rev B by SQ Wei (2000)
  64. Kamenev BV, Tsybeskov L, Baribeau JM, Lockwood DJ. Photoluminescence and Raman scattering in three-dimensional Si/Si1−x Gex nanostructures. Appl Phys Lett, 2004, 84: 1293–1295 (10.1063/1.1650873) / Appl Phys Lett by BV Kamenev (2004)
  65. Sun ZH, Wei SQ, Kolobov AV, Oyanagi H, Brunner K. Short-range order structures of self-assembled Ge quantum dots probed by multiple-scattering extended X-ray absorption fine structure. Phys Rev B, 2005, 71: 245334 (10.1103/PhysRevB.71.245334) / Phys Rev B by ZH Sun (2005)
  66. Wolf SA, Awschalom DD, Buhrman RA, et al. Spintronics: a spin-based electronics vision for the future. Science, 2001, 294: 1488–1495 (10.1126/science.1065389) / Science by SA Wolf (2001)
  67. Žutić I, Fabian J, Das Sarma S. Spintronics: fundamentals and applications. Rev Mod Phys, 2004, 76: 323–410 (10.1103/RevModPhys.76.323) / Rev Mod Phys by I Žutić (2004)
  68. Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281: 951–956 (10.1126/science.281.5379.951) / Science by H Ohno (1998)
  69. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287: 1019–1022 (10.1126/science.287.5455.1019) / Science by T Dietl (2000)
  70. Liu C, Yun F, Morkoc H. Ferromagnetism of ZnO and GaN: a review. J Mater Sci-Mater El, 2005, 16: 555–597 (10.1007/s10854-005-3232-1) / J Mater Sci-Mater El by C Liu (2005)
  71. Wei SQ, Yan WS, Sun ZH, et al. Direct determination of Mn occupations in Ga1−x MnxN dilute magnetic semiconductors by X-ray absorption near-edge structure spectrosc opy. Appl Phys Lett, 2006, 89: 121901 (10.1063/1.2354442) / Appl Phys Lett by SQ Wei (2006)
  72. He B, Zhang XY, Wei SQ, et al. Local structure around Mn atoms in cubic (Ga,Mn)N thin films probed by fluorescence extended X-ray absorption fine structure. Appl Phys Lett, 2006, 88: 051905 (10.1063/1.2168228) / Appl Phys Lett by B He (2006)
  73. Kunisu M, Oba F, Ikeno H, Tanaka I, Yamamoto T. Local environment of Mn dopant in ZnO by near-edge X-ray absorption fine structure analysis. Appl Phys Lett, 2005, 86: 121902 (10.1063/1.1885175) / Appl Phys Lett by M Kunisu (2005)
  74. Sun ZH, Yan WS, Zhang GB, et al. Evidence of substitutional Co ion clusters in Zn1−x CoxO dilute magnetic semiconductors. Phys Rev B, 2008, 77: 242508 / Phys Rev B by ZH Sun (2008)
  75. Spaldin NA. Search for ferromagnetism in transition-metal-doped piezoelectric ZnO. Phys Rev B, 2004, 69: 125201 (10.1103/PhysRevB.69.125201) / Phys Rev B by NA Spaldin (2004)
  76. Gopal P, Spaldin NA. Magnetic interactions in transition-metal-doped ZnO: an ab initio study. Phys Rev B, 2006, 74: 094418 (10.1103/PhysRevB.74.094418) / Phys Rev B by P Gopal (2006)
  77. Yuhas BD, Fakra S, Marcus MA, Yang PD. Probing the local coordination environment for transition metal dopants in zinc oxide nanowires. Nano Lett, 2007, 7: 905–909 (10.1021/nl0626939) / Nano Lett by BD Yuhas (2007)
  78. Yao T, Yan WS, Sun ZH, et al. Magnetic property and spatial occupation of Co dopants in Zn0.98Co0.02O nanowires. J Phys Chem C, 2009, 113: 14114–14118 (10.1021/jp902685k) / J Phys Chem C by T Yao (2009)
  79. Yu JH, Liu XY, Kweon KE, et al. Giant Zeeman splitting in nucleation-controlled doped CdSe: Mn2+ quantum nanoribbons. Nat Mater, 2010, 9: 47–53 (10.1038/nmat2572) / Nat Mater by JH Yu (2010)
  80. Segura-Ruiz J, Martinez-Criado G, Chu MH, Geburt S, Ronning C. Nano-X-ray absorption spectroscopy of single Co-implanted ZnO nanowires. Nano Lett, 2011, 11: 5322–5326 (10.1021/nl202799e) / Nano Lett by J Segura-Ruiz (2011)
  81. Yan WS, Liu QH, Wang C, et al. Realizing ferromagnetic coupling in diluted magnetic semiconductor quantum dots. J Am Chem Soc, 2014, 136: 1150–1155 (10.1021/ja411900w) / J Am Chem Soc by WS Yan (2014)
  82. Sun ZH, Yang XY, Wang C, et al. Graphene activating room-temperature ferromagnetic exchange in cobalt-doped ZnO dilute magnetic semiconductor quantum dots. ACS Nano, 2014, 8: 10589–10596 (10.1021/nn5040845) / ACS Nano by ZH Sun (2014)
  83. Sun YF, Sun ZH, Gao S, et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat Commun, 2012, 3: 1057 (10.1038/ncomms2066) / Nat Commun by YF Sun (2012)
  84. Sun YF, Cheng H, Gao S, et al. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew Chem Int Ed, 2012, 51: 8727–8731 (10.1002/anie.201204675) / Angew Chem Int Ed by YF Sun (2012)
  85. Sun YF, Cheng H, Gao S, et al. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J Am Chem Soc, 2012, 134: 20294–20297 (10.1021/ja3102049) / J Am Chem Soc by YF Sun (2012)
  86. Sun YF, Liu QH, Gao S, et al. Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation. Nat Commun, 2013, 4: 2899 (10.1038/ncomms3899) / Nat Commun by YF Sun (2013)
  87. Cheng WR, He JF, Yao T, et al. Half-unit-cell alpha-Fe2O3 semiconductor nanosheets with intrinsic and robust ferromagnetism. J Am Chem Soc, 2014, 136: 10393–10398 (10.1021/ja504088n) / J Am Chem Soc by WR Cheng (2014)
  88. Sun YF, Sun ZH, Gao S, et al. All-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv Energ Mater, 2014, 4: doi: 10.1002/aenm.201300611 (10.1002/aenm.201300611)
  89. Yao T, Sun ZH, Li YY, et al. Insights into initial kinetic nucleation of gold nanocrystals. J Am Chem Soc, 2010, 132: 7696–7701 (10.1021/ja101101d) / J Am Chem Soc by T Yao (2010)
  90. Mesu JG, van der Eerden AM, de Groot FM, Weckhuysen BM. Synchrotron radiation effects on catalytic systems as probed with a combined in-situ UV-Vis/XAFS spectroscopic setup. J Phys Chem B, 2005, 109: 4042–4047 (10.1021/jp045206r) / J Phys Chem B by JG Mesu (2005)
  91. Mesu JG, Beale AM, de Groot FM, Weckhuysen BM. Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy. J Phys Chem B, 2006, 110: 17671–17677 (10.1021/jp062618m) / J Phys Chem B by JG Mesu (2006)
  92. Yao T, Liu SJ, Sun ZH, et al. Probing nucleation pathways for morphological manipulation of platinum nanocrystals. J Am Chem Soc, 2012, 134: 9410–9416 (10.1021/ja302642x) / J Am Chem Soc by T Yao (2012)
  93. Ohyama J, Teramura K, Higuchi Y, et al. An in situ quick XAFS spectroscopy study on the formation mechanism of small gold nanoparticles supported by porphyrin-cored tetradentate passivants. Phys Chem Chem Phys, 2011, 13: 11128–11135 (10.1039/c1cp20231f) / Phys Chem Chem Phys by J Ohyama (2011)
  94. Ohyama J, Teramura K, Higuchi Y, et al. In situ observation of nucleation and growth process of gold nanoparticles by quick XAFS spectros copy. ChemPhysChem, 2011, 12: 127–131 (10.1002/cphc.201000731) / ChemPhysChem by J Ohyama (2011)
  95. Tanaka T, Ohyama J, Teramura K, Hitomi Y. Formation mechanism of metal nanoparticles studied by XAFS spectroscopy and effective synthesis of small metal nanoparticles. Catal Today, 2012, 183: 108–118 (10.1016/j.cattod.2011.09.003) / Catal Today by T Tanaka (2012)
  96. Harada M, Einaga H. In situ XAFS studies of Au particle formation by photoreduction in polymer solutions. Langmuir, 2007, 23: 6536–6543 (10.1021/la0701071) / Langmuir by M Harada (2007)
  97. Harada M, Inada Y. In Situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions. Langmuir, 2009, 25: 6049–6061 (10.1021/la900550t) / Langmuir by M Harada (2009)
  98. Harada M, Tamura N, Takenaka M. Nucleation and growth of metal nanoparticles during photoreduction using in situ time-resolved SAXS analysis. J Phys Chem C, 2011, 115: 14081–14092 (10.1021/jp203119a) / J Phys Chem C by M Harada (2011)
  99. Harada M, Kamigaito Y. Nucleation and aggregative growth process of platinum nanoparticles studied by in situ quick XAFS spectr oscopy. Langmuir, 2012, 28: 2415–2428 (10.1021/la204031j) / Langmuir by M Harada (2012)
  100. Banares MA. Operando spectroscopy: the knowledge bridge to assessing structure-performance relationships in catalyst nanoparticles. Adv Mater, 2011, 23: 5293–5301 (10.1002/adma.201101803) / Adv Mater by MA Banares (2011)
  101. Tada M, Murata S, Asakoka T, et al. In situ time-resolved dynamic surface events on the Pt/C cathode in a fuel cell under operando conditions. Angew Chem Int Ed, 2007, 46: 4310–4315 (10.1002/anie.200604732) / Angew Chem Int Ed by M Tada (2007)
  102. Uemura Y, Inada Y, Bando KK, et al. Core-shell phase separation and structural transformation of Pt3Sn alloy nanoparticles supported on gamma-Al2O3 in the reduction and oxidation processes characterized by in situ time-resolved XAFS. J Phys Chem C, 2011, 115: 5823–5833 (10.1021/jp111286b) / J Phys Chem C by Y Uemura (2011)
  103. Tada M, Uemura Y, Bal R, et al. In situ time-resolved DXAFS for the determination of kinetics of structural changes of H-ZSM-5-supported active Re-cluster catalyst in the direct phenol synthesis from benzene and O-2. Phys Chem Chem Phys, 2010, 12: 5701–5706 (10.1039/c000843p) / Phys Chem Chem Phys by M Tada (2010)
  104. Ishiguro N, Saida T, Uruga T, et al. Operando time-resolved X-ray absorption fine structure study for surface events on a Pt3Co/C cathode catalyst in a polymer electrolyte fuel cell during voltage-operating processes. ACS Catal, 2012, 2: 1319–1330 (10.1021/cs300228p) / ACS Catal by N Ishiguro (2012)
  105. Wang XQ, Hanson JC, Frenkel AI, Kim JY, Rodriguez JA. Time-resolved studies for the mechanism of reduction of copper oxides with carbon monoxide: complex behavior of lattice oxygen and the formation of suboxides. J Phys Chem B, 2004, 108: 13667–13673 (10.1021/jp040366o) / J Phys Chem B by XQ Wang (2004)
  106. Wang Q, Hanson JC, Frenkel AI. Solving the structure of reaction intermediates by time-resolved synchrotron X-ray absorption spectroscopy. J Chem Phys, 2008, 129: 234502 (10.1063/1.3040271) / J Chem Phys by Q Wang (2008)
  107. Wang X, Rodriguez JA, Hanson JC, Perez M, Evans J. In situ time-resolved characterization of Au-CeO2 and AuOx-CeO2 catalysts during the water-gas shift reaction: presence of Au and O vacancies in the active phase. J Chem Phys, 2005, 123: 221101 (10.1063/1.2136876) / J Chem Phys by X Wang (2005)
  108. Frenkel AI, Rodriguez JA, Chen JGG. Synchrotron techniques for in situ catalytic studies: capabilities, challenges, and opportunities. ACS Catal, 2012, 2: 2269–2280 (10.1021/cs3004006) / ACS Catal by AI Frenkel (2012)
  109. Rodriguez JA, Hanson JC, Stacchiola D, Senanayake SD. In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts. Phys Chem Chem Phys, 2013, 15: 12004–12025 (10.1039/c3cp50416f) / Phys Chem Chem Phys by JA Rodriguez (2013)
Dates
Type When
Created 10 years, 4 months ago (April 13, 2015, 11:46 a.m.)
Deposited 6 years ago (Aug. 23, 2019, 6:49 a.m.)
Indexed 4 weeks ago (Aug. 2, 2025, 12:55 a.m.)
Issued 10 years, 4 months ago (April 1, 2015)
Published 10 years, 4 months ago (April 1, 2015)
Published Online 10 years, 4 months ago (April 13, 2015)
Published Print 10 years, 4 months ago (April 1, 2015)
Funders 0

None

@article{Sun_2015, title={X-ray absorption fine structure spectroscopy in nanomaterials}, volume={58}, ISSN={2199-4501}, url={http://dx.doi.org/10.1007/s40843-015-0043-4}, DOI={10.1007/s40843-015-0043-4}, number={4}, journal={Science China Materials}, publisher={Springer Science and Business Media LLC}, author={Sun, Zhihu and Liu, Qinghua and Yao, Tao and Yan, Wensheng and Wei, Shiqiang}, year={2015}, month=apr, pages={313–341} }