Crossref journal-article
Tsinghua University Press
Nano Research (11138)
Bibliography

Xu, Z., Zhuang, C., Zou, Z., Wang, J., Xu, X., & Peng, T. (2017). Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly. Nano Research, 10(7), 2193–2209.

Authors 6
  1. Zili Xu (first)
  2. Chuansheng Zhuang (additional)
  3. Zhijuan Zou (additional)
  4. Jingyu Wang (additional)
  5. Xiaochan Xu (additional)
  6. Tianyou Peng (additional)
References 55 Referenced 81
  1. Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824–9852. (10.1021/cr5000738) / Chem. Rev. by R. Asahi (2014)
  2. Lang, X. J.; Ma, W. H.; Chen, C. C.; Ji, H. W.; Zhao, J. C. Selective aerobic oxidation mediated by TiO2 photocatalysis. Acc. Chem. Res. 2014, 47, 355–363. (10.1021/ar4001108) / Acc. Chem. Res. by X. J. Lang (2014)
  3. Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987–10043. (10.1021/cr500008u) / Chem. Rev. by Y. Ma (2014)
  4. Zhao, D.; Yang, C. F. Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renew. Sust. Energ. Rev. 2016, 54, 1048–1059. (10.1016/j.rser.2015.10.100) / Renew. Sust. Energ. Rev. by D. Zhao (2016)
  5. Hao, R. R.; Wang, G. H.; Tang, H.; Sun, L. L.; Xu, C.; Han, D. Y. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B: Environ. 2016, 187, 47–58. (10.1016/j.apcatb.2016.01.026) / Appl. Catal. B: Environ. by R. R. Hao (2016)
  6. Jiang, Z. F.; Zhu, C. Z.; Wan, W. M.; Qian, K.; Xie, J. M. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production. J. Mater. Chem. A 2016, 4, 1806–1818. (10.1039/C5TA09919F) / J. Mater. Chem. A by Z. F. Jiang (2016)
  7. Sridharan, K.; Jang, E. Y.; Park, T. J. Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B: Environ. 2013, 142–143, 718–728. (10.1016/j.apcatb.2013.05.077) / Appl. Catal. B: Environ. by K. Sridharan (2013)
  8. Yu, J. G.; Wang, S. H.; Low, J. X.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890. (10.1039/c3cp53131g) / Phys. Chem. Chem. Phys. by J. G. Yu (2013)
  9. Muñoz-Batista, M. J.; Kubacka, A.; Fernández-García, G. Effect of g-C3N4 loading on TiO2-based photocatalysts: UV and visible degradation of toluene. Catal. Sci. Technol. 2014, 4, 2006–2015. (10.1039/c4cy00226a) / Catal. Sci. Technol. by M. J. Muñoz-Batista (2014)
  10. Gu, L.; Wang, J. Y.; Zou, Z. J.; Han, X. J. Graphitic-C3N4- hybridized TiO2 nanosheets with reactive {001} facets to enhance the UV- and visible-light photocatalytic activity. J. Hazard. Mater. 2014, 268, 216–223. (10.1016/j.jhazmat.2014.01.021) / J. Hazard. Mater. by L. Gu (2014)
  11. Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830–1834. (10.1002/anie.201508505) / Angew. Chem., Int. Ed. by S. E. Guo (2016)
  12. Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718–1728. (10.1007/s12274-014-0675-9) / Nano Res. by Q. Han (2015)
  13. Mao, J.; Peng, T. Y.; Zhang, X. H.; Li, K.; Ye, L. Q.; Zan, L. Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal. Sci. Technol. 2013, 3, 1253–1260. (10.1039/c3cy20822b) / Catal. Sci. Technol. by J. Mao (2013)
  14. Xu, L.; Huang, W. Q.; Wang, L. L.; Tian, Z. A.; Hu, W. Y.; Ma, Y. M.; Wang, X.; Pan, A. L.; Huang, G. F. Insights into enhanced visible-light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: The role of oxygen. Chem. Mater. 2015, 27, 1612–1621. (10.1021/cm504265w) / Chem. Mater. by L. Xu (2015)
  15. Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21. (10.1021/ja308249k) / J. Am. Chem. Soc. by X. D. Zhang (2013)
  16. Ma, T. Y.; Tang, Y. H.; Dai, S.; Qiao, S. Z. Protonfunctionalized two-dimensional graphitic carbon nitride nanosheet: An excellent metal-/label-free biosensing platform. Small 2014, 10, 2382–2389. (10.1002/smll.201303827) / Small by T. Y. Ma (2014)
  17. Xu, J.; Zhang, L. W.; Shi, R.; Zhu, Y. F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 2013, 1, 14766–14772. (10.1039/c3ta13188b) / J. Mater. Chem. A by J. Xu (2013)
  18. Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 1730–1733. (10.1021/ja411321s) / J. Am. Chem. Soc. by K. Schwinghammer (2014)
  19. Cheng, F. X.; Wang, H. N.; Dong, X. P. The amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly route. Chem. Commun. 2015, 51, 7176–7179. (10.1039/C5CC01035G) / Chem. Commun. by F. X. Cheng (2015)
  20. Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209. (10.1007/s12274-014-0600-2) / Nano Res. by C. Han (2015)
  21. Li, Y. L.; Wang, J. S.; Yang, Y. L.; Zhang, Y.; He, D.; An, Q. E.; Cao, G. Z. Seed-induced growing various TiO2 nanostructures on g-C3N4 nanosheets with much enhanced photocatalytic activity under visible light. J. Hazard. Mater. 2015, 292, 79–89. (10.1016/j.jhazmat.2015.03.006) / J. Hazard. Mater. by Y. L. Li (2015)
  22. Tong, Z. W.; Yang, D.; Xiao, T. X.; Tian, Y.; Jiang, Z. Y. Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 2015, 260, 117–125. (10.1016/j.cej.2014.08.072) / Chem. Eng. J. by Z. W. Tong (2015)
  23. Paek, S. M.; Jung, H.; Park, M.; Lee, J. K.; Choy, J. H. An inorganic nanohybrid with high specific surface area: TiO2- pillared MoS2. Chem. Mater. 2005, 17, 3492–3498. (10.1021/cm0477220) / Chem. Mater. by S. M. Paek (2005)
  24. Qiu, B. C.; Li, Q. Y.; Shen, B.; Xing, M. Y.; Zhang, J. L. Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent photo-Fenton reaction and high-performance lithium storage. Appl. Catal. B: Environ. 2016, 183, 216–223. (10.1016/j.apcatb.2015.10.053) / Appl. Catal. B: Environ. by B. C. Qiu (2016)
  25. Su, D.; Wang, J. Y.; Tang, Y. P.; Liu, C.; Liu, L. F.; Han, X. J. Constructing WO3/TiO2 composite structure towards sufficient use of solar energy. Chem. Commun. 2011, 47, 4231–4233. (10.1039/c0cc04770h) / Chem. Commun. by D. Su (2011)
  26. Wang, J. Y.; Zhao, Y. Z.; Xu, X. C.; Feng, X. L.; Yu, J. X.; Li, T. A facile interfacial assembling strategy for synthesizing yellow TiO2 flakes with a narrowed bandgap. RSC Adv. 2015, 5, 58176–58183. (10.1039/C5RA08101G) / RSC Adv. by J. Y. Wang (2015)
  27. Wang, J. Y.; Han, X. J.; Liu, C.; Zhang, W.; Cai, R. X.; Liu, Z. H. Adjusting the crystal phase and morphology of titania via a soft chemical process. Cryst. Growth Des. 2010, 10, 2185–2191. (10.1021/cg901429u) / Cryst. Growth Des. by J. Y. Wang (2010)
  28. Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757–770. (10.1016/j.nanoen.2015.03.014) / Nano Energy by W. J. Ong (2015)
  29. Gu, L. A.; Wang, J. Y.; Cheng, H.; Zhao, Y. Z.; Liu, L. F.; Han, X. J One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 2013, 5, 3085–3093. (10.1021/am303274t) / ACS Appl. Mater. Interfaces by L. A. Gu (2013)
  30. Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634–4639. (10.1002/adma.201502057) / Adv. Mater. by Q. H. Liang (2015)
  31. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85, 5595–5599. (10.1021/ac400924j) / Anal. Chem. by J. Q. Tian (2013)
  32. Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456. (10.1002/adma.201204453) / Adv. Mater. by S. B. Yang (2013)
  33. Feng, H. B.; Wu, Y. M.; Li, J. H. Direct exfoliation of graphite to graphene by a facile chemical approach. Small 2014, 10, 2233–2238. (10.1002/smll.201303722) / Small by H. B. Feng (2014)
  34. Feng, H. B.; Cheng, R.; Zhao, X.; Duan, X. F.; Li, J. H. A low-temperature method to produce highly reduced graphene oxide. Nat. Commun. 2013, 4, 1539. (10.1038/ncomms2555) / Nat. Commun. by H. B. Feng (2013)
  35. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl. Chem. 1985, 57, 603–619. (10.1351/pac198557040603) / Pure Appl. Chem. by K. S. W. Sing (1985)
  36. Zhang, J. Y.; Wang, Y. H.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. G. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317–10324. (10.1021/am403327g) / ACS Appl. Mater. Interfaces by J. Y. Zhang (2013)
  37. Nguyen, P. T. M.; Fan, C. Y.; Do, D. D.; Nicholson, D. On the cavitation-like pore blocking in ink-bottle pore: Evolution of hysteresis loop with neck size. J. Phys. Chem. C 2013, 117, 5475–5484. (10.1021/jp4002912) / J. Phys. Chem. C by P. T. M. Nguyen (2013)
  38. Pandiselvi, K.; Fang, H. F.; Huang, X. B.; Wang, J. Y.; Xu, X. C.; Li, T. Constructing a novel carbon nitride/polyaniline/ZnO ternary heterostructure with enhanced photocatalytic performance using exfoliated carbon nitride nanosheets as supports. J. Hazard. Mater. 2016, 314, 67–77. (10.1016/j.jhazmat.2016.04.035) / J. Hazard. Mater. by K. Pandiselvi (2016)
  39. Zhang, Z. Y.; Liu, K. C.; Feng, Z. Q.; Bao, Y. N.; Dong, B. Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer. Sci. Rep. 2016, 6, 19221. (10.1038/srep19221) / Sci. Rep. by Z. Y. Zhang (2016)
  40. Castarlenas, S.; Rubio, C.; Mayoral, Á.; Téllez, C.; Coronas, J. Few-layer graphene by assisted-exfoliation of graphite with layered silicate. Carbon 2014, 73, 99–105. (10.1016/j.carbon.2014.02.044) / Carbon by S. Castarlenas (2014)
  41. He, F.; Chen, G.; Yu, Y. G.; Hao, S.; Zhou, Y. S.; Zheng, Y. Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity. ACS Appl. Mater. Interfaces 2014, 6, 7171–7179. (10.1021/am500198y) / ACS Appl. Mater. Interfaces by F. He (2014)
  42. Li, J. H.; Shen, B.; Hong, Z. H.; Lin, B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygendoped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012, 48, 12017–12019. (10.1039/c2cc35862j) / Chem. Commun. by J. H. Li (2012)
  43. Lin, L.; Li, M.; Jiang, L. Q.; Li, Y. F.; Liu, D. J.; He, X. Q.; Cui, L. L. A novel iron (II) polyphthalocyanine catalyst assembled on graphene with significantly enhanced performance for oxygen reduction reaction in alkaline medium. J. Power Sources 2014, 268, 269–278. (10.1016/j.jpowsour.2014.06.062) / J. Power Sources by L. Lin (2014)
  44. Jiang, Y. Y.; Lu, Y. Z.; Lv, X. Y.; Han, D. X.; Zhang, Q. X.; Niu, L.; Chen, W. Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal. 2013, 3, 1263–1271. (10.1021/cs4001927) / ACS Catal. by Y. Y. Jiang (2013)
  45. Jiang, Z. Z.; Wang, Z. B.; Chu, Y. Y.; Gu, D. M.; Yin, G. P. Ultrahigh stable carbon riveted Pt/TiO2–C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell. Energy Environ. Sci. 2011, 4, 728–735. (10.1039/C0EE00475H) / Energy Environ. Sci. by Z. Z. Jiang (2011)
  46. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Mullenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1979; pp 68–69. / Handbook of X-ray Photoelectron Spectroscopy by C. D. Wagner (1979)
  47. Cheng, H.; Feng, X. L.; Wang, D. L.; Xu, M.; Pandiselvi, K.; Wang, J. Y.; Zou, Z. J.; Li, T. Synthesis of highly stable and methanol-tolerant electrocatalyst for oxygen reduction: Co supporting on N-doped-C hybridized TiO2. Electrochim. Acta 2015, 180, 564–573. (10.1016/j.electacta.2015.08.143) / Electrochim. Acta by H. Cheng (2015)
  48. Wang, J. Y.; Liu, Z. H.; Cai, R. X. A new role for Fe3+ in TiO2 hydrosol: Accelerated photodegradation of dyes under visible light. Environ. Sci. Technol. 2008, 42, 5759–5764. (10.1021/es800616b) / Environ. Sci. Technol. by J. Y. Wang (2008)
  49. Tran, T. H.; Nosaka, A. Y.; Nosaka, Y. Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems. J. Phys. Chem. B 2006, 110, 25525–25531. (10.1021/jp065255z) / J. Phys. Chem. B by T. H. Tran (2006)
  50. Liu, H.; Jin, Z. T.; Xu, Z. Z. Hybridization of Cd0.2Zn0.8S with g-C3N4 nanosheets: A visible-light-driven photocatalyst for H2 evolution from water and degradation of organic pollutants. Dalton Trans. 2015, 44, 14368–14375. (10.1039/C5DT01364J) / Dalton Trans. by H. Liu (2015)
  51. Hu, J. H.; Wang, L. J.; Zhang, P.; Liang, C. H.; Shao, G. S. Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production. J. Power Sources 2016, 328, 28–36. (10.1016/j.jpowsour.2016.08.001) / J. Power Sources by J. H. Hu (2016)
  52. Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386. (10.1021/nn901221k) / ACS Nano by H. Zhang (2010)
  53. Jiang, X. L; Fu, X. L; Zhang, L.; Meng, S. G.; Chen, S. F. Photocatalytic reforming of glycerol for H2 evolution on Pt/TiO2: Fundamental understanding the effect of co-catalyst Pt and the Pt deposition route. J. Mater. Chem. A 2015, 3, 2271–2282. (10.1039/C4TA06052K) / J. Mater. Chem. A by X. L. Jiang (2015)
  54. Huang, Z. A.; Sun, Q.; Lv, K. L.; Zhang, Z. H.; Li, M.; Li, B. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs. (101) facets of TiO2. Appl. Catal. B: Environ. 2015, 164, 420–427. (10.1016/j.apcatb.2014.09.043) / Appl. Catal. B: Environ. by Z. A. Huang (2015)
  55. Zhang, H.; Guo, L. H.; Zhao, L. X.; Wan, B.; Yang, Y. Switching oxygen reduction pathway by exfoliating graphitic carbon nitride for enhanced photocatalytic phenol degradation. J. Phys. Chem. Lett. 2015, 6, 958–963. (10.1021/acs.jpclett.5b00149) / J. Phys. Chem. Lett. by H. Zhang (2015)
Dates
Type When
Created 8 years, 5 months ago (March 24, 2017, 7:10 a.m.)
Deposited 8 months, 3 weeks ago (Dec. 12, 2024, 6:07 p.m.)
Indexed 2 months, 1 week ago (June 25, 2025, 4:48 p.m.)
Issued 8 years, 5 months ago (March 24, 2017)
Published 8 years, 5 months ago (March 24, 2017)
Published Online 8 years, 5 months ago (March 24, 2017)
Published Print 8 years, 2 months ago (July 1, 2017)
Funders 0

None

@article{Xu_2017, title={Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly}, volume={10}, ISSN={1998-0000}, url={http://dx.doi.org/10.1007/s12274-017-1453-2}, DOI={10.1007/s12274-017-1453-2}, number={7}, journal={Nano Research}, publisher={Tsinghua University Press}, author={Xu, Zili and Zhuang, Chuansheng and Zou, Zhijuan and Wang, Jingyu and Xu, Xiaochan and Peng, Tianyou}, year={2017}, month=mar, pages={2193–2209} }