Crossref journal-article
Tsinghua University Press
Nano Research (11138)
Bibliography

Sun, C., Dong, Q., Yang, J., Dai, Z., Lin, J., Chen, P., Huang, W., & Dong, X. (2016). Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Research, 9(8), 2234–2243.

Authors 8
  1. Chencheng Sun (first)
  2. Qiuchun Dong (additional)
  3. Jun Yang (additional)
  4. Ziyang Dai (additional)
  5. Jianjian Lin (additional)
  6. Peng Chen (additional)
  7. Wei Huang (additional)
  8. Xiaochen Dong (additional)
References 53 Referenced 225
  1. Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569. (10.1039/C3CS60468C) / Chem. Soc. Rev. by C. G. Morales-Guio (2014)
  2. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. (10.1039/C4CS00448E) / Chem. Soc. Rev. by X. X. Zou (2015)
  3. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. (10.1039/C4CS00470A) / Chem. Soc. Rev. by Y. Jiao (2015)
  4. Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542. (10.1039/C4EE01760A) / Energy Environ. Sci. by M. S. Faber (2014)
  5. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913. (10.1038/nmat1752) / Nat. Mater. by J. Greeley (2006)
  6. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473. (10.1021/cr1002326) / Chem. Rev. by M. G. Walter (2010)
  7. Skúlason, E.; Karlberg, G. S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; Jónsson, H.; Nørskov, J. K. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys. Chem. Chem. Phys. 2007, 9, 3241–3250. (10.1039/B700099E) / Phys. Chem. Chem. Phys. by E. Skúlason (2007)
  8. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404. (10.1021/jz2016507) / J. Phys. Chem. Lett. by Y. Lee (2012)
  9. Ledendecker, M.; Krick Calderón, S.; Papp, C.; Steinrück, H. P.; Antonietti, M.; Shalom, M. The synthesis of nano-structured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem., Int. Ed. 2015, 127, 12538–12542. (10.1002/ange.201502438) / Angew. Chem., Int. Ed. by M. Ledendecker (2015)
  10. Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H.-J.; Baek, J.-B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892. (10.1021/cr5003563) / Chem. Rev. by L. M. Dai (2015)
  11. Zhu, W. X.; Yue, X. Y.; Zhang, W. T.; Yu, S. X.; Zhang, Y. H.; Wang, J.; Wang, J. L. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2016, 52, 1486–1489. (10.1039/C5CC08064A) / Chem. Commun. by W. X. Zhu (2016)
  12. Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812. (10.1039/C3CS60425J) / Chem. Soc. Rev. by J. R. Ran (2014)
  13. Kaeffer, N.; Chavarot-Kerlidou, M.; Artero, V. Hydrogen evolution catalyzed by cobalt diimine–dioxime complexes. Acc. Chem. Res. 2015, 48, 1286–1295. (10.1021/acs.accounts.5b00058) / Acc. Chem. Res. by N. Kaeffer (2015)
  14. Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888. (10.1039/c1ee01970h) / Energy Environ. Sci. by D. Merki (2011)
  15. Sun, C. C.; Yang, J.; Dai, Z. Y.; Wang, X. W.; Zhang, Y. F.; Li, L. Q.; Chen, P.; Huang, W.; Dong, X. C. Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Res. 2016, 9, 1300–1309. (10.1007/s12274-016-1025-x) / Nano Res. by C. C. Sun (2016)
  16. Zhu, J. X.; Sakaushi, K.; Clavel, G.; Shalom, M.; Antonietti, M.; Fellinger, T.-P. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. J. Am. Chem. Soc. 2015, 137, 5480–5485. (10.1021/jacs.5b01072) / J. Am. Chem. Soc. by J. X. Zhu (2015)
  17. Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558. (10.1039/c3ee42413h) / Energy Environ. Sci. by D. S. Kong (2013)
  18. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385. (10.1126/science.1212858) / Science by J. Suntivich (2011)
  19. Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675. (10.1021/ja5085157) / J. Am. Chem. Soc. by Y. W. Liu (2014)
  20. Zhu, Q. L.; Xu, Q. Metal–organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512. (10.1039/C3CS60472A) / Chem. Soc. Rev. by Q. L. Zhu (2014)
  21. Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 1999, 402, 276–279. (10.1038/46248) / Nature by H. L. Li (1999)
  22. Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314. (10.1039/b802256a) / Chem. Soc. Rev. by L. J. Murray (2009)
  23. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. (10.1039/b807080f) / Chem. Soc. Rev. by J. Lee (2009)
  24. Jiang, H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@ Ag core−shell nanoparticles stabilized on metal−organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306. (10.1021/ja1099006) / J. Am. Chem. Soc. by H.-L. Jiang (2011)
  25. Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840. (10.1039/C4CS00010B) / Chem. Soc. Rev. by Z. C. Hu (2014)
  26. Zhang, M.; Feng, G. X.; Song, Z. G.; Zhou, Y.-P.; Chao, H.-Y.; Yuan, D. Q.; Tan, T. T. Y.; Guo, Z. G.; Hu, Z. G.; Tang, B. Z. et al. Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241–7244. (10.1021/ja502643p) / J. Am. Chem. Soc. by M. Zhang (2014)
  27. He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108. (10.1021/acs.chemrev.5b00125) / Chem. Rev. by C. B. He (2015)
  28. Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866. (10.1039/C5EE00762C) / Energy Environ. Sci. by W. Xia (2015)
  29. Li, S.-L.; Xu, Q. Metal–organic frameworks as platforms for clean energy. Energy Environ. Sci. 2013, 6, 1656–1683. (10.1039/c3ee40507a) / Energy Environ. Sci. by S.-L. Li (2013)
  30. Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391. (10.1021/ja307475c) / J. Am. Chem. Soc. by L. Zhang (2012)
  31. Hou, Y.; Li, J. Y.; Wen, Z. H.; Cui, S. M.; Yuan, C.; Chen, J. H. Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 2015, 12, 1–8. (10.1016/j.nanoen.2014.11.043) / Nano Energy by Y. Hou (2015)
  32. Hou, Y.; Wen, Z. H.; Cui, S. M.; Ci, S. Q.; Mao, S.; Chen, J. H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 2015, 25, 872–882. (10.1002/adfm.201403657) / Adv. Funct. Mater. by Y. Hou (2015)
  33. Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal–organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512–6519. (10.1038/ncomms7512) / Nat. Commun. by H. B. Wu (2015)
  34. You, B.; Jiang, N.; Sheng, M. L.; Gul, S.; Yano, J.; Sun, Y. J. High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks. Chem. Mater. 2015, 27, 7636–7642. (10.1021/acs.chemmater.5b02877) / Chem. Mater. by B. You (2015)
  35. Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011. (10.1021/nl300794f) / Nano Lett. by B. Liu (2012)
  36. Sun, C. C.; Yang, J.; Rui, X. H.; Zhang, W. N.; Yan, Q. Y.; Chen, P.; Huo, F. W.; Huang, W.; Dong, X. C. MOFdirected templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithiumion battery anodes. J. Mater. Chem. A 2015, 3, 8483–8488. (10.1039/C5TA00455A) / J. Mater. Chem. A by C. C. Sun (2015)
  37. Shi, Q.; Chen, Z. F.; Song, Z. W.; Li, J. P.; Dong, J. X. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew. Chem., Int. Ed. 2011, 50, 672–675. (10.1002/anie.201004937) / Angew. Chem., Int. Ed. by Q. Shi (2011)
  38. Cabán-Acevedo, M.; Faber, M. S.; Tan, Y. Z.; Hamers, R. J.; Jin, S. Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires. Nano Lett. 2012, 12, 1977–1982. (10.1021/nl2045364) / Nano Lett. by M. Cabán-Acevedo (2012)
  39. Feng, Y. J.; He, T.; Alonso-Vante, N. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium. Electrochim. Acta 2009, 54, 5252–5256. (10.1016/j.electacta.2009.03.052) / Electrochim. Acta by Y. J. Feng (2009)
  40. Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546–8550. (10.1002/anie.201303495) / Angew. Chem., Int. Ed. by Y. F. Xu (2013)
  41. Van der Heide, H.; Hemmel, R.; Van Bruggen, C. F.; Haas, C. X-ray photoelectron spectra of 3d transition metal pyrites. J. Solid State Chem. 1980, 33, 17–25. (10.1016/0022-4596(80)90543-5) / J. Solid State Chem. by H. Heide Van der (1980)
  42. Liu, T. T.; Liu, Q.; Asiri, A. M.; Luo, Y. L.; Sun, X. P. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chem. Commun. 2015, 51, 16683–16686. (10.1039/C5CC06892D) / Chem. Commun. by T. T. Liu (2015)
  43. Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900. (10.1021/ja501497n) / J. Am. Chem. Soc. by D. S. Kong (2014)
  44. Zhang, H. X.; Yang, B.; Wu, X. L.; Li, Z. J.; Lei, L. C.; Zhang, X. W. Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 2015, 7, 1772–1779. (10.1021/am507373g) / ACS Appl Mater Interfaces by H. X. Zhang (2015)
  45. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786. (10.1038/nmat3087) / Nat. Mater. by Y. Y. Liang (2011)
  46. Liu, X. J.; Chang, Z.; Luo, L.; Xu, T. H.; Lei, X. D.; Liu, J. F.; Sun, X. M. Hierarchical ZnxCo3–x O4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 2014, 26, 1889–1895. (10.1021/cm4040903) / Chem. Mater. by X. J. Liu (2014)
  47. Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129. (10.1039/C5EE03316K) / Energy Environ. Sci. by X. J. Cui (2016)
  48. Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem. 2014, 126, 4461–4465. (10.1002/ange.201311111) / Angew. Chem. by X. X. Zou (2014)
  49. Duan, J. J.; Chen, S.; Chambers, B. A.; Andersson, G. G.; Qiao, S. Z. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv. Mater. 2015, 27, 4234–4241. (10.1002/adma.201501692) / Adv. Mater. by J. J. Duan (2015)
  50. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590. (10.1021/ja503372r) / J. Am. Chem. Soc. by J. Q. Tian (2014)
  51. Pentland, N.; Bockris, J. O. M.; Sheldon, E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron: Mechanism and measurement technique under high purity conditions. J. Electrochem. Soc. 1957, 104, 182–194. (10.1149/1.2428530) / J. Electrochem. Soc. by N. Pentland (1957)
  52. de Chialvo, M. R. G.; Chialvo, A. C. Hydrogen evolution reaction: Analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model. J. Electroanal. Chem. 1994, 372, 209–223. (10.1016/0022-0728(93)03043-O) / J. Electroanal. Chem. by M. R. G. Chialvo de (1994)
  53. Ma, T. Y.; Dai, S.; Qiao, S. Z. Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today, in press, DOI: 10.1016/j.mattod.2015.10.012. (10.1016/j.mattod.2015.10.012)
Dates
Type When
Created 9 years, 1 month ago (July 29, 2016, 1:04 p.m.)
Deposited 8 months, 3 weeks ago (Dec. 12, 2024, 6:05 p.m.)
Indexed 1 week ago (Aug. 29, 2025, 6:30 a.m.)
Issued 9 years, 1 month ago (July 30, 2016)
Published 9 years, 1 month ago (July 30, 2016)
Published Online 9 years, 1 month ago (July 30, 2016)
Published Print 9 years, 1 month ago (Aug. 1, 2016)
Funders 0

None

@article{Sun_2016, title={Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting}, volume={9}, ISSN={1998-0000}, url={http://dx.doi.org/10.1007/s12274-016-1110-1}, DOI={10.1007/s12274-016-1110-1}, number={8}, journal={Nano Research}, publisher={Tsinghua University Press}, author={Sun, Chencheng and Dong, Qiuchun and Yang, Jun and Dai, Ziyang and Lin, Jianjian and Chen, Peng and Huang, Wei and Dong, Xiaochen}, year={2016}, month=jul, pages={2234–2243} }