Crossref
journal-article
Tsinghua University Press
Nano Research (11138)
References
53
Referenced
225
-
Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.
(
10.1039/C3CS60468C
) / Chem. Soc. Rev. by C. G. Morales-Guio (2014) -
Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.
(
10.1039/C4CS00448E
) / Chem. Soc. Rev. by X. X. Zou (2015) -
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.
(
10.1039/C4CS00470A
) / Chem. Soc. Rev. by Y. Jiao (2015) -
Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.
(
10.1039/C4EE01760A
) / Energy Environ. Sci. by M. S. Faber (2014) -
Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.
(
10.1038/nmat1752
) / Nat. Mater. by J. Greeley (2006) -
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.
(
10.1021/cr1002326
) / Chem. Rev. by M. G. Walter (2010) -
Skúlason, E.; Karlberg, G. S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; Jónsson, H.; Nørskov, J. K. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys. Chem. Chem. Phys. 2007, 9, 3241–3250.
(
10.1039/B700099E
) / Phys. Chem. Chem. Phys. by E. Skúlason (2007) -
Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.
(
10.1021/jz2016507
) / J. Phys. Chem. Lett. by Y. Lee (2012) -
Ledendecker, M.; Krick Calderón, S.; Papp, C.; Steinrück, H. P.; Antonietti, M.; Shalom, M. The synthesis of nano-structured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem., Int. Ed. 2015, 127, 12538–12542.
(
10.1002/ange.201502438
) / Angew. Chem., Int. Ed. by M. Ledendecker (2015) -
Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H.-J.; Baek, J.-B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.
(
10.1021/cr5003563
) / Chem. Rev. by L. M. Dai (2015) -
Zhu, W. X.; Yue, X. Y.; Zhang, W. T.; Yu, S. X.; Zhang, Y. H.; Wang, J.; Wang, J. L. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2016, 52, 1486–1489.
(
10.1039/C5CC08064A
) / Chem. Commun. by W. X. Zhu (2016) -
Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.
(
10.1039/C3CS60425J
) / Chem. Soc. Rev. by J. R. Ran (2014) -
Kaeffer, N.; Chavarot-Kerlidou, M.; Artero, V. Hydrogen evolution catalyzed by cobalt diimine–dioxime complexes. Acc. Chem. Res. 2015, 48, 1286–1295.
(
10.1021/acs.accounts.5b00058
) / Acc. Chem. Res. by N. Kaeffer (2015) -
Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.
(
10.1039/c1ee01970h
) / Energy Environ. Sci. by D. Merki (2011) -
Sun, C. C.; Yang, J.; Dai, Z. Y.; Wang, X. W.; Zhang, Y. F.; Li, L. Q.; Chen, P.; Huang, W.; Dong, X. C. Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Res. 2016, 9, 1300–1309.
(
10.1007/s12274-016-1025-x
) / Nano Res. by C. C. Sun (2016) -
Zhu, J. X.; Sakaushi, K.; Clavel, G.; Shalom, M.; Antonietti, M.; Fellinger, T.-P. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. J. Am. Chem. Soc. 2015, 137, 5480–5485.
(
10.1021/jacs.5b01072
) / J. Am. Chem. Soc. by J. X. Zhu (2015) -
Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558.
(
10.1039/c3ee42413h
) / Energy Environ. Sci. by D. S. Kong (2013) -
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.
(
10.1126/science.1212858
) / Science by J. Suntivich (2011) -
Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.
(
10.1021/ja5085157
) / J. Am. Chem. Soc. by Y. W. Liu (2014) -
Zhu, Q. L.; Xu, Q. Metal–organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.
(
10.1039/C3CS60472A
) / Chem. Soc. Rev. by Q. L. Zhu (2014) -
Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 1999, 402, 276–279.
(
10.1038/46248
) / Nature by H. L. Li (1999) -
Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.
(
10.1039/b802256a
) / Chem. Soc. Rev. by L. J. Murray (2009) -
Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.
(
10.1039/b807080f
) / Chem. Soc. Rev. by J. Lee (2009) -
Jiang, H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@ Ag core−shell nanoparticles stabilized on metal−organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306.
(
10.1021/ja1099006
) / J. Am. Chem. Soc. by H.-L. Jiang (2011) -
Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.
(
10.1039/C4CS00010B
) / Chem. Soc. Rev. by Z. C. Hu (2014) -
Zhang, M.; Feng, G. X.; Song, Z. G.; Zhou, Y.-P.; Chao, H.-Y.; Yuan, D. Q.; Tan, T. T. Y.; Guo, Z. G.; Hu, Z. G.; Tang, B. Z. et al. Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241–7244.
(
10.1021/ja502643p
) / J. Am. Chem. Soc. by M. Zhang (2014) -
He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.
(
10.1021/acs.chemrev.5b00125
) / Chem. Rev. by C. B. He (2015) -
Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.
(
10.1039/C5EE00762C
) / Energy Environ. Sci. by W. Xia (2015) -
Li, S.-L.; Xu, Q. Metal–organic frameworks as platforms for clean energy. Energy Environ. Sci. 2013, 6, 1656–1683.
(
10.1039/c3ee40507a
) / Energy Environ. Sci. by S.-L. Li (2013) -
Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391.
(
10.1021/ja307475c
) / J. Am. Chem. Soc. by L. Zhang (2012) -
Hou, Y.; Li, J. Y.; Wen, Z. H.; Cui, S. M.; Yuan, C.; Chen, J. H. Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 2015, 12, 1–8.
(
10.1016/j.nanoen.2014.11.043
) / Nano Energy by Y. Hou (2015) -
Hou, Y.; Wen, Z. H.; Cui, S. M.; Ci, S. Q.; Mao, S.; Chen, J. H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 2015, 25, 872–882.
(
10.1002/adfm.201403657
) / Adv. Funct. Mater. by Y. Hou (2015) -
Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal–organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512–6519.
(
10.1038/ncomms7512
) / Nat. Commun. by H. B. Wu (2015) -
You, B.; Jiang, N.; Sheng, M. L.; Gul, S.; Yano, J.; Sun, Y. J. High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks. Chem. Mater. 2015, 27, 7636–7642.
(
10.1021/acs.chemmater.5b02877
) / Chem. Mater. by B. You (2015) -
Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.
(
10.1021/nl300794f
) / Nano Lett. by B. Liu (2012) -
Sun, C. C.; Yang, J.; Rui, X. H.; Zhang, W. N.; Yan, Q. Y.; Chen, P.; Huo, F. W.; Huang, W.; Dong, X. C. MOFdirected templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithiumion battery anodes. J. Mater. Chem. A 2015, 3, 8483–8488.
(
10.1039/C5TA00455A
) / J. Mater. Chem. A by C. C. Sun (2015) -
Shi, Q.; Chen, Z. F.; Song, Z. W.; Li, J. P.; Dong, J. X. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew. Chem., Int. Ed. 2011, 50, 672–675.
(
10.1002/anie.201004937
) / Angew. Chem., Int. Ed. by Q. Shi (2011) -
Cabán-Acevedo, M.; Faber, M. S.; Tan, Y. Z.; Hamers, R. J.; Jin, S. Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires. Nano Lett. 2012, 12, 1977–1982.
(
10.1021/nl2045364
) / Nano Lett. by M. Cabán-Acevedo (2012) -
Feng, Y. J.; He, T.; Alonso-Vante, N. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium. Electrochim. Acta 2009, 54, 5252–5256.
(
10.1016/j.electacta.2009.03.052
) / Electrochim. Acta by Y. J. Feng (2009) -
Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546–8550.
(
10.1002/anie.201303495
) / Angew. Chem., Int. Ed. by Y. F. Xu (2013) -
Van der Heide, H.; Hemmel, R.; Van Bruggen, C. F.; Haas, C. X-ray photoelectron spectra of 3d transition metal pyrites. J. Solid State Chem. 1980, 33, 17–25.
(
10.1016/0022-4596(80)90543-5
) / J. Solid State Chem. by H. Heide Van der (1980) -
Liu, T. T.; Liu, Q.; Asiri, A. M.; Luo, Y. L.; Sun, X. P. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chem. Commun. 2015, 51, 16683–16686.
(
10.1039/C5CC06892D
) / Chem. Commun. by T. T. Liu (2015) -
Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.
(
10.1021/ja501497n
) / J. Am. Chem. Soc. by D. S. Kong (2014) -
Zhang, H. X.; Yang, B.; Wu, X. L.; Li, Z. J.; Lei, L. C.; Zhang, X. W. Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 2015, 7, 1772–1779.
(
10.1021/am507373g
) / ACS Appl Mater Interfaces by H. X. Zhang (2015) -
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.
(
10.1038/nmat3087
) / Nat. Mater. by Y. Y. Liang (2011) -
Liu, X. J.; Chang, Z.; Luo, L.; Xu, T. H.; Lei, X. D.; Liu, J. F.; Sun, X. M. Hierarchical ZnxCo3–x O4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 2014, 26, 1889–1895.
(
10.1021/cm4040903
) / Chem. Mater. by X. J. Liu (2014) -
Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.
(
10.1039/C5EE03316K
) / Energy Environ. Sci. by X. J. Cui (2016) -
Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem. 2014, 126, 4461–4465.
(
10.1002/ange.201311111
) / Angew. Chem. by X. X. Zou (2014) -
Duan, J. J.; Chen, S.; Chambers, B. A.; Andersson, G. G.; Qiao, S. Z. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv. Mater. 2015, 27, 4234–4241.
(
10.1002/adma.201501692
) / Adv. Mater. by J. J. Duan (2015) -
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.
(
10.1021/ja503372r
) / J. Am. Chem. Soc. by J. Q. Tian (2014) -
Pentland, N.; Bockris, J. O. M.; Sheldon, E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron: Mechanism and measurement technique under high purity conditions. J. Electrochem. Soc. 1957, 104, 182–194.
(
10.1149/1.2428530
) / J. Electrochem. Soc. by N. Pentland (1957) -
de Chialvo, M. R. G.; Chialvo, A. C. Hydrogen evolution reaction: Analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model. J. Electroanal. Chem. 1994, 372, 209–223.
(
10.1016/0022-0728(93)03043-O
) / J. Electroanal. Chem. by M. R. G. Chialvo de (1994) -
Ma, T. Y.; Dai, S.; Qiao, S. Z. Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today, in press, DOI: 10.1016/j.mattod.2015.10.012.
(
10.1016/j.mattod.2015.10.012
)
Dates
Type | When |
---|---|
Created | 9 years, 1 month ago (July 29, 2016, 1:04 p.m.) |
Deposited | 8 months, 3 weeks ago (Dec. 12, 2024, 6:05 p.m.) |
Indexed | 1 week ago (Aug. 29, 2025, 6:30 a.m.) |
Issued | 9 years, 1 month ago (July 30, 2016) |
Published | 9 years, 1 month ago (July 30, 2016) |
Published Online | 9 years, 1 month ago (July 30, 2016) |
Published Print | 9 years, 1 month ago (Aug. 1, 2016) |
@article{Sun_2016, title={Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting}, volume={9}, ISSN={1998-0000}, url={http://dx.doi.org/10.1007/s12274-016-1110-1}, DOI={10.1007/s12274-016-1110-1}, number={8}, journal={Nano Research}, publisher={Tsinghua University Press}, author={Sun, Chencheng and Dong, Qiuchun and Yang, Jun and Dai, Ziyang and Lin, Jianjian and Chen, Peng and Huang, Wei and Dong, Xiaochen}, year={2016}, month=jul, pages={2234–2243} }