Crossref journal-article
Tsinghua University Press
Nano Research (11138)
Bibliography

Gong, M., Wang, D.-Y., Chen, C.-C., Hwang, B.-J., & Dai, H. (2015). A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research, 9(1), 28–46.

Authors 5
  1. Ming Gong (first)
  2. Di-Yan Wang (additional)
  3. Chia-Chun Chen (additional)
  4. Bing-Joe Hwang (additional)
  5. Hongjie Dai (additional)
References 104 Referenced 870
  1. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502. (10.1021/cr100246c) / Chem. Rev. by T. R. Cook (2010)
  2. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7. (10.1038/nchem.141) / Nat. Chem. by H. B. Gray (2009)
  3. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. (10.1039/B800489G) / Chem. Soc. Rev. by A. Kudo (2009)
  4. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. (10.1073/pnas.0603395103) / Proc. Natl. Acad. Sci. USA by N. S. Lewis (2006)
  5. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036. (10.1021/ja3089923) / J. Am. Chem. Soc. by Y. Y. Liang (2013)
  6. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473. (10.1021/cr1002326) / Chem. Rev. by M. G. Walter (2010)
  7. Wang, H. L.; Dai, H. J. Strongly coupled inorganic–nanocarbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113. (10.1039/c2cs35307e) / Chem. Soc. Rev. by H. L. Wang (2013)
  8. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Physics Today 2004, 57, 39–44. (10.1063/1.1878333) / Physics Today by G. W. Crabtree (2004)
  9. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337. (10.1038/35104599) / Nature by M. S. Dresselhaus (2001)
  10. Häussinger, P.; Lohmü ller, R.; Watson, A. M. Hydrogen. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000. (10.1002/14356007.a13_297)
  11. Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on pem water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. (10.1016/j.ijhydene.2013.01.151) / Hydrogen Energy by M. Carmo (2013)
  12. Gong, M.; Dai, H. J. A mini review of nife-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39. (10.1007/s12274-014-0591-z)
  13. Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260. (10.1016/j.cattod.2008.08.039) / Catal. Today by J. D. Holladay (2009)
  14. Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. (10.1016/j.pecs.2009.11.002) / Prog. Energy Combust. Sci. by K. Zeng (2010)
  15. Lasia, A. Hydrogen evolution reaction. In Handbook of Fuel Cells; John Wiley & Sons: New York, 2010. / Hydrogen evolution reaction by A. Lasia (2010)
  16. Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Stamenkovic, V. R.; Markovic, N. M. Electrocatalysis of the her in acid and alkaline media. J. Serb. Chem. Soc. 2013, 78, 2007–2015. (10.2298/JSC131118136D) / J. Serb. Chem. Soc. by N. Danilovic (2013)
  17. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26. (10.1149/1.1856988)
  18. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nø rskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913. (10.1038/nmat1752) / Nat. Mater. by J. Greeley (2006)
  19. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nø rskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309. (10.1021/ja0504690) / J. Am. Chem. Soc. by B. Hinnemann (2005)
  20. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102. (10.1126/science.1141483) / Science by T. F. Jaramillo (2007)
  21. Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009, 140, 219–231. (10.1039/B803857K) / Faraday Discuss. by J. Bonde (2009)
  22. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299. (10.1021/ja201269b) / J. Am. Chem. Soc. by Y. G. Li (2011)
  23. Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928. (10.1007/s12274-013-0369-8) / Nano Res. by C. L. Choi (2013)
  24. Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558. (10.1039/c3ee42413h) / Energy Environ. Sci. by D. S. Kong (2013)
  25. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270. (10.1021/ja403440e) / J. Am. Chem. Soc. by E. J. Popczun (2013)
  26. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS 2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855. (10.1038/nmat3700) / Nat. Mater. by D. Voiry (2013)
  27. Cheng, L.; Huang, W. J.; Gong, Q. F.; Liu, C. H.; Liu, Z.; Li, Y. G.; Dai, H. J. Ultrathin WS2 nanoflakes as a highperformance electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7860–7863. (10.1002/anie.201402315) / Angew. Chem., Int. Ed. by L. Cheng (2014)
  28. Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061. (10.1021/ja504099w) / J. Am. Chem. Soc. by M. S. Faber (2014)
  29. Faber, M. S.; Lukowski, M. A.; Ding, Q.; Kaiser, N. S.; Jin, S. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J. Phys. Chem. C 2014, 118, 21347–21356. (10.1021/jp506288w) / J. Phys. Chem. C by M. S. Faber (2014)
  30. Gao, M.-R.; Cao, X.; Gao, Q.; Xu, Y.-F.; Zheng, Y.-R.; Jiang, J.; Yu, S.-H. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 2014, 8, 3970–3978. (10.1021/nn500880v) / ACS Nano by M.-R. Gao (2014)
  31. Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859. / Ed. by P. Jiang (2014)
  32. Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900. (10.1021/ja501497n) / J. Am. Chem. Soc. by D. S. Kong (2014)
  33. Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. 2014, 126, 5531–5534. (10.1002/ange.201402646) / Angew. Chem. by E. J. Popczun (2014)
  34. Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K. R.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575. (10.1007/s12274-014-0677-7) / Nano Res. by H. T. Wang (2015)
  35. Zhang, Y. J.; Gong, Q. F.; Li, L.; Yang, H. C.; Li, Y. G.; Wang, Q. B. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Res. 2015, 8, 1108–1115. (10.1007/s12274-014-0590-0) / Nano Res. by Y. J. Zhang (2015)
  36. Wang, D.-Y.; Gong, M.; Chou, H.-L.; Pan, C.-J.; Chen, H.-A.; Wu, Y. P.; Lin, M.-C.; Guan, M. Y.; Yang, J.; Chen, C.-W. et al. Highly active and stable hybrid catalyst of cobalt-doped FeS 2 nanosheets–carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592. (10.1021/ja511572q) / J. Am. Chem. Soc. by D.-Y. Wang (2015)
  37. Merrill, M. D.; Dougherty, R. C. Metal oxide catalysts for the evolution of O2 from H2O. J. Phys. Chem. C 2008, 112, 3655–3666. (10.1021/jp710675m) / J. Phys. Chem. C by M. D. Merrill (2008)
  38. Jiao, F.; Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 2010, 3, 1018–1027. (10.1039/c002074e) / Energy Environ. Sci. by F. Jiao (2010)
  39. Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure–activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801–6809. (10.1021/ja301018q) / J. Am. Chem. Soc. by D. K. Bediako (2012)
  40. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261. (10.1021/ja307507a) / J. Am. Chem. Soc. by L. Trotochaud (2012)
  41. Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455. (10.1021/ja4027715) / J. Am. Chem. Soc. by M. Gong (2013)
  42. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337. (10.1021/ja405351s) / J. Am. Chem. Soc. by M. W. Louie (2013)
  43. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. (10.1021/ja407115p) / J. Am. Chem. Soc. by C. C. L. McCrory (2013)
  44. Tüysüz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47–54. (10.1007/s12274-012-0280-8) / Nano Res. by H. Tüysüz (2013)
  45. Lu, Z. Y.; Wang, H. T.; Kong, D.; Yan, K.; Hsu, P.-C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345. (10.1038/ncomms5345) / Nat. Commun. by Z. Y. Lu (2014)
  46. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477. (10.1038/ncomms5477) / Nat. Commun. by F. Song (2014)
  47. Davis, J. R. Nickel, Cobalt, and Their Alloys; ASM international: Materials Park, OH, 2000. / Nickel, Cobalt, and Their Alloys by J. R. Davis (2000)
  48. Stoney, G. G. The tension of metallic films deposited by electrolysis. Proc. Roy. Soc. Lond. A 1909, 82, 172–175. (10.1098/rspa.1909.0021) / Proc. Roy. Soc. Lond. A by G. G. Stoney (1909)
  49. Fournier, J.; Brossard, L.; Tilquin, J. Y.; Coté, R.; Dodelet, J. P.; Guay, D.; Mé nard, H. Hydrogen evolution reaction in alkaline solution: Catalytic influence of pt supported on graphite vs. Pt inclusions in graphite. J. Electrochem. Soc. 1996, 143, 919–926. (10.1149/1.1836559) / Pt inclusions in graphite. J. Electrochem. Soc. by J. Fournier (1996)
  50. Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs. alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529–B1536. (10.1149/1.3483106) / J. Electrochem. Soc. by W. C. Sheng (2010)
  51. Devanathan, M. A. V.; Selvaratnam, M. Mechanism of the hydrogen-evolution reaction on nickel in alkaline solutions by the determination of the degree of coverage. Trans. Faraday Soc. 1960, 56, 1820–1831. (10.1039/tf9605601820) / Trans. Faraday Soc. by M. A. V. Devanathan (1960)
  52. Miles, M.; Kissel, G.; Lu, P. W. T.; Srinivasan, S. Effect of temperature on electrode kinetic parameters for hydrogen and oxygen evolution reactions on nickel electrodes in alkaline solutions. J. Electrochem. Soc. 1976, 123, 332–336. (10.1149/1.2132820) / J. Electrochem. Soc. by M. Miles (1976)
  53. Krstajic, N.; Popovic, M.; Grgur, B.; Vojnović, M.; Šepa, D. On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution: Part I. The mechanism. J. Electroanal. Chem. 2001, 512, 16–26. (10.1016/S0022-0728(01)00590-3) / The mechanism. J. Electroanal. Chem. by N. Krstajic (2001)
  54. Diard, J.-P.; LeGorrec, B.; Maximovitch, S. Etude de l’activation du degagement d’hydrogene sur electrode d’oxyde de nickel par spectroscopie d’impedance. Electrochim. Acta 1990, 35, 1099–1108. (10.1016/0013-4686(90)90049-6) / Electrochim. Acta by J.-P. Diard (1990)
  55. Kreysa, G.; Hakansson, B.; Ekdunge, P. Kinetic and thermodynamic analysis of hydrogen evolution at nickel electrodes. Electrochim. Acta 1988, 33, 1351–1357. (10.1016/0013-4686(88)80125-7) / Electrochim. Acta by G. Kreysa (1988)
  56. LeRoy, R. L.; Janjua, M. B. I.; Renaud, R.; Leuenberger, U. Analysis of time-variation effects in water electrolyzers. J. Electrochem. Soc. 1979, 126, 1674–1682. (10.1149/1.2128775) / J. Electrochem. Soc. by R. L. LeRoy (1979)
  57. Soares, D. M.; Teschke, O.; Torriani, I. Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media. J. Electrochem. Soc. 1992, 139, 98–105. (10.1149/1.2069207) / J. Electrochem. Soc. by D. M. Soares (1992)
  58. Bernardini, M.; Comisso, N.; Davolio, G.; Mengoli, G. Formation of nickel hydrides by hydrogen evolution in alkaline media. J. Electroanal. Chem. 1998, 442, 125–135. (10.1016/S0022-0728(97)00492-0) / J. Electroanal. Chem. by M. Bernardini (1998)
  59. Weininger, J. L.; Breiter, M. W. Hydrogen evolution and surface oxidation of nickel electrodes in alkaline solution. J. Electrochem. Soc. 1964, 111, 707–712. (10.1149/1.2426216) / J. Electrochem. Soc. by J. L. Weininger (1964)
  60. Raveendran, P.; Fu, J.; Wallen, S. L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 2003, 125, 13940–13941. (10.1021/ja029267j) / J. Am. Chem. Soc. by P. Raveendran (2003)
  61. Grzelczak, M.; Pé rez-Juste, J.; Mulvaney, P.; Liz-Marzá n, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791. (10.1039/b711490g) / Chem. Soc. Rev. by M. P. Grzelczak (2008)
  62. Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433. (10.1021/cr100449n) / Chem. Rev. by R. Ghosh Chaudhuri (2012)
  63. Lin, Y.-Y.; Wang, D.-Y.; Yen, H.-C.; Chen, H.-L.; Chen, C.-C.; Chen, C.-M.; Tang, C.-Y.; Chen, C.-W. Extended red light harvesting in a poly(3-hexylthiophene)/iron disulfide nanocrystal hybrid solar cell. Nanotechnology 2009, 20, 405207. / Nanotechnology by Y.-Y. Lin (2009)
  64. Wang, D. Y.; Jiang, Y. T.; Lin, C. C.; Li, S. S.; Wang, Y. T.; Chen, C. C.; Chen, C. W. Solution-processable pyrite FeS2 nanocrystals for the fabrication of heterojunction photodiodes with visible to nir photodetection. Adv. Mater. 2012, 24, 3415–3420. (10.1002/adma.201200753) / Adv. Mater. by D. Y. Wang (2012)
  65. Wang, Y. C.; Wang, D. Y.; Jiang, Y. T.; Chen, H. A.; Chen, C. C.; Ho, K. C.; Chou, H. L.; Chen, C. W. FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2013, 52, 6694–6698. (10.1002/anie.201300401) / Angew. Chem., Int. Ed. by Y. C. Wang (2013)
  66. Chen, D.-H.; Wu, S.-H. Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater. 2000, 12, 1354–1360. (10.1021/cm991167y) / Chem. Mater. by D.-H. Chen (2000)
  67. Wu, S.-H.; Chen, D.-H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interf. Sci. 2003, 259, 282–286. (10.1016/S0021-9797(02)00135-2) / J. Colloid Interf. Sci. by S.-H. Wu (2003)
  68. Sahiner, N.; Ozay, H.; Ozay, O.; Aktas, N. New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Appl. Catal. A: Gen. 2010, 385, 201–207. (10.1016/j.apcata.2010.07.004) / Appl. Catal. A: Gen. by N. Sahiner (2010)
  69. Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281. (10.1038/nnano.2011.38) / Nat. Nanotechnol. by H. G. Zhang (2011)
  70. Gong, M.; Li, Y. G.; Zhang, H. B.; Zhang, B.; Zhou, W.; Feng, J.; Wang, H. L.; Liang, Y. Y.; Fan, Z. J.; Liu, J. et al. Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ Sci 2014, 7, 2025–2032. (10.1039/c4ee00317a) / Energy Environ Sci by M. Gong (2014)
  71. Zhou, H. H.; Peng, C. Y.; Jiao, S. Q.; Zeng, W.; Chen, J. H.; Kuang, Y. F. Electrodeposition of nanoscaled nickel in a reverse microemulsion. Electrochem. Commun. 2006, 8, 1142–1146. (10.1016/j.elecom.2006.05.015) / Electrochem. Commun. by H. H. Zhou (2006)
  72. Hang, T.; Hu, A. M.; Ling, H. Q.; Li, M.; Mao, D. L. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition. Appl. Surf. Sci. 2010, 256, 2400–2404. (10.1016/j.apsusc.2009.10.074) / Appl. Surf. Sci. by T. Hang (2010)
  73. Ahn, S. H.; Hwang, S. J.; Yoo, S. J.; Choi, I.; Kim, H.-J.; Jang, J. H.; Nam, S. W.; Lim, T.-H.; Lim, T.; Kim, S.-K. et al. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. J. Mater. Chem. 2012, 22, 15153–15159. (10.1039/c2jm31439h) / J. Mater. Chem. by S. H. Ahn (2012)
  74. McArthur, M. A.; Jorge, L.; Coulombe, S.; Omanovic, S. Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte. J. Power Sources 2014, 266, 365–373. (10.1016/j.jpowsour.2014.05.036) / J. Power Sources by M. A. McArthur (2014)
  75. Brown, D. E.; Mahmood, M. N.; Man, M. C. M.; Turner, A. K. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions. Electrochim. Acta 1984, 29, 1551–1556. (10.1016/0013-4686(84)85008-2) / Electrochim. Acta by D. E. Brown (1984)
  76. Raj, I. A.; Vasu, K. I. Transition metal-based hydrogen electrodes in alkaline solution—Electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem. 1990, 20, 32–38. (10.1007/BF01012468) / J. Appl. Electrochem. by I. A. Raj (1990)
  77. Raj, I. A.; Vasu, K. I. Transition metal-based cathodes for hydrogen evolution in alkaline solution: Electrocatalysis on nickel-based ternary electrolytic codeposits. J. Appl. Electrochem. 1992, 22, 471–477. (10.1007/BF01077551) / J. Appl. Electrochem. by I. A. Raj (1992)
  78. Angelo, A. C. D.; Lasia, A. Surface effects in the hydrogen evolution reaction on Ni–Zn alloy electrodes in alkaline solutions. J. Electrochem. Soc. 1995, 142, 3313–3319. (10.1149/1.2049980) / J. Electrochem. Soc. by A. C. D. Angelo (1995)
  79. Lupi, C.; Dell’Era, A.; Pasquali, M. Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media. Int. J. Hydrogen Energy 2009, 34, 2101–2106. (10.1016/j.ijhydene.2009.01.015) / Int. J. Hydrogen Energy by C. Lupi (2009)
  80. Dong, H. X.; Lei, T.; He, Y. H.; Xu, N. P.; Huang, B. Y.; Liu, C. T. Electrochemical performance of porous Ni3Al electrodes for hydrogen evolution reaction. Int. J. Hydrogen Energy 2011, 36, 12112–12120. (10.1016/j.ijhydene.2011.06.115) / Int. J. Hydrogen Energy by H. X. Dong (2011)
  81. McKone, J. R.; Sadtler, B. F.; Werlang, C. A.; Lewis, N. S.; Gray, H. B. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 2013, 3, 166–169. (10.1021/cs300691m) / ACS Catal. by J. R. McKone (2013)
  82. Campbell, J. A.; Whiteker, R. A. A periodic table based on potential–pH diagrams. J. Chem. Educ. 1969, 46, 90. / Educ. by J. A. Campbell (1969)
  83. Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grä tzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596. (10.1126/science.1258307) / Science by J. Luo (2014)
  84. Wang, H. T.; Lee, H.-W.; Deng, Y.; Lu, Z. Y.; Hsu, P.-C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261. (10.1038/ncomms8261) / Nat. Commun. by H. T. Wang (2015)
  85. Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogenevolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem., Int. Ed. 2012, 51, 6131–6135. (10.1002/anie.201200699) / Angew. Chem., Int. Ed. by W. F. Chen (2012)
  86. Han, Q.; Liu, K. R.; Chen, J. S.; Wei, X. J. A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes. Int. J. Hydrogen Energy 2003, 28, 1207–1212. (10.1016/S0360-3199(02)00283-5) / Hydrogen Energy by Q. Han (2003)
  87. Paseka, I. Evolution of hydrogen and its sorption on remarkable active amorphous smooth Ni–P(x) electrodes. Electrochim. Acta 1995, 40, 1633–1640. (10.1016/0013-4686(95)00077-R) / Electrochim. Acta by I. Paseka (1995)
  88. Burchardt, T. Hydrogen evolution on NiPx alloys: The influence of sorbed hydrogen. Int. J. Hydrogen Energy 2001, 26, 1193–1198. (10.1016/S0360-3199(01)00053-2) / Int. J. Hydrogen Energy by T. Burchardt (2001)
  89. Feng, L. G.; Vrubel, H.; Bensimon, M.; Hu, X. L. Easilyprepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Phys. Chem. Chem. Phys. 2014, 16, 5917–5921. (10.1039/c4cp00482e) / Phys. Chem. Chem. Phys. by L. G. Feng (2014)
  90. Jin, Z. Y.; Li, P. P.; Huang, X.; Zeng, G. F.; Jin, Y.; Zheng, B. Z.; Xiao, D. Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2014, 2, 18593–18599. (10.1039/C4TA04434G) / J. Mater. Chem. A by Z. Y. Jin (2014)
  91. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K.-C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 2011, 334, 1256–1260. (10.1126/science.1211934) / Science by R. Subbaraman (2011)
  92. Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. 2012, 124, 12663–12666. (10.1002/ange.201204842) / Angew. Chem. by N. Danilovic (2012)
  93. Gong, M.; Zhou, W.; Tsai, M.-C.; Zhou, J. G.; Guan, M. Y.; Lin, M.-C.; Zhang, B.; Hu, Y. F.; Wang, D.-Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695. (10.1038/ncomms5695) / Nat. Commun. by M. Gong (2014)
  94. Gong, M.; Zhou, W.; Kenney, M. J.; Kapusta, R.; Cowley, S.; Wu, Y. P.; Lu, B. G.; Lin, M. C.; Wang, D. Y.; Yang, J. et al. Blending Cr2O3 into a NiO–Ni electrocatalyst for sustained water splitting. Angew. Chem. 2015, 127, 12157–12161. (10.1002/ange.201504815) / Angew. Chem. by M. Gong (2015)
  95. Duby, P. The history of progress in dimensionally stable anodes. JOM 1993, 45, 41–43. (10.1007/BF03222350) / JOM by P. Duby (1993)
  96. Yoshida, N.; Morimoto, T. A new low hydrogen overvoltage cathode for chlor–alkali electrolysis cell. Electrochim. Acta 1994, 39, 1733–1737. / Acta by N. Yoshida (1994)
  97. Pilla, A. S.; Cobo, E. O.; Duarte, M. M. E.; Salinas, D. R. Evaluation of anode deactivation in chlor–alkali cells. J. Appl. Electrochem. 1997, 27, 1283–1289. (10.1023/A:1018444206334) / J. Appl. Electrochem. by A. S. Pilla (1997)
  98. Jiang, N.; Meng, H.-M.; Song, L.-J.; Yu, H.-Y. Study on Ni–Fe–C cathode for hydrogen evolution from seawater electrolysis. Int. J. Hydrogen Energy 2010, 35, 8056–8062. (10.1016/j.ijhydene.2010.01.092) / Int. J. Hydrogen Energy by N. Jiang (2010)
  99. Kenney, M. J.; Gong, M.; Li, Y.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836–840. (10.1126/science.1241327) / Science by M. J. Kenney (2013)
  100. Feng, J.; Gong, M.; Kenney, M. J.; Wu, J. Z.; Zhang, B.; Li, Y. G.; Dai, H. J. Nickel-coated silicon photocathode for water splitting in alkaline electrolytes. Nano Res. 2015, 8, 1577–1583. (10.1007/s12274-014-0643-4) / Nano Res. by J. Feng (2015)
  101. McKone, J. R.; Warren, E. L.; Bierman, M. J.; Boettcher, S. W.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 2011, 4, 3573–3583. (10.1039/c1ee01488a) / Energy Environ. Sci. by J. R. McKone (2011)
  102. Rozendal, R. A.; Hamelers, H. V. M.; Euverink, G. J. W.; Metz, S. J.; Buisman, C. J. N. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 2006, 31, 1632–1640. (10.1016/j.ijhydene.2005.12.006) / Int. J. Hydrogen Energy by R. A. Rozendal (2006)
  103. Logan, B. E.; Call, D.; Cheng, S. A.; Hamelers, H. V. M.; Sleutels, T. H. J. A.; Jeremiasse, A. W.; Rozendal, R. A. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 2008, 42, 8630–8640. (10.1021/es801553z) / Environ. Sci. Technol. by B. E. Logan (2008)
  104. Selembo, P. A.; Merrill, M. D.; Logan, B. E. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. Int. J. Hydrogen Energy 2010, 35, 428–437. (10.1016/j.ijhydene.2009.11.014) / Int. J. Hydrogen Energy by P. A. Selembo (2010)
Dates
Type When
Created 9 years, 7 months ago (Dec. 29, 2015, 10:23 a.m.)
Deposited 8 months, 2 weeks ago (Dec. 12, 2024, 6:05 p.m.)
Indexed 5 hours, 23 minutes ago (Aug. 29, 2025, 5:42 a.m.)
Issued 9 years, 8 months ago (Dec. 28, 2015)
Published 9 years, 8 months ago (Dec. 28, 2015)
Published Online 9 years, 8 months ago (Dec. 28, 2015)
Published Print 9 years, 7 months ago (Jan. 1, 2016)
Funders 0

None

@article{Gong_2015, title={A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction}, volume={9}, ISSN={1998-0000}, url={http://dx.doi.org/10.1007/s12274-015-0965-x}, DOI={10.1007/s12274-015-0965-x}, number={1}, journal={Nano Research}, publisher={Tsinghua University Press}, author={Gong, Ming and Wang, Di-Yan and Chen, Chia-Chun and Hwang, Bing-Joe and Dai, Hongjie}, year={2015}, month=dec, pages={28–46} }