Crossref
journal-article
Tsinghua University Press
Nano Research (11138)
References
56
Referenced
244
-
Hsu, H. C.; Shown, I.; Wei, H. Y.; Chang, Y. C.; Du, H. Y.; Lin, Y. G.; Tseng, C. A.; Wang, C. H.; Chen, L. C.; Lin, Y. C.; Chen, K. H. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 2013, 5, 262–268.
(
10.1039/C2NR31718D
) / Nanoscale by H C Hsu (2013) -
Liou, P. Y.; Chen, S. C.; Wu, J. C. S.; Liu, D.; Mackintosh, S.; Maroto-Valer, M.; Linforth, R. Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy Environ. Sci. 2011, 4, 1487–1494.
(
10.1039/c0ee00609b
) / Energy Environ. Sci. by P Y Liou (2011) -
Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372–7408.
(
10.1002/anie.201207199
) / Angew. Chem. Int. Ed. by S N Habisreutinger (2013) -
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
(
10.1038/238037a0
) / Nature by A Fujishima (1972) -
Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 2009, 9, 731–737.
(
10.1021/nl803258p
) / Nano Lett. by O K Varghese (2009) -
Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.
(
10.1021/cr00035a013
) / Chem. Rev. by A L Linsebigler (1995) -
Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.
(
10.1038/nature06964
) / Nature by H G Yang (2008) -
Yu, J.; Qi, L.; Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 2010, 114, 13118–13125.
(
10.1021/jp104488b
) / J. Phys. Chem. C by J Yu (2010) -
Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Facet-dependent photocatalytic properties of TiO2-based composites for energy conversion and environmental remediation. ChemSusChem 2014, 7, 690–719.
(
10.1002/cssc.201300924
) / ChemSusChem by W J Ong (2014) -
Xu, H.; Ouyang, S.; Li, P.; Kako, T.; Ye, J. High-active anatase TiO2 nanosheets exposed with 95% {100{ facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl. Mater. Inter. 2013, 5, 1348–1354.
(
10.1021/am302631b
) / ACS Appl. Mater. Inter. by H Xu (2013) -
Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Highly reactive {001} facets of TiO2-based composites: Synthesis, formation mechanism and characterizations. Nanoscale 2014, 6, 1946–2008.
(
10.1039/c3nr04655a
) / Nanoscale by W J Ong (2014) -
Lai, Z.; Peng, F.; Wang, Y.; Wang, H.; Yu, H.; Liu, P.; Zhao, H. Low temperature solvothermal synthesis of anatase TiO2 single crystals with wholly {100} and {001} faceted surfaces. J. Mater. Chem. 2012, 22, 23906–23912.
(
10.1039/c2jm34880b
) / J. Mater. Chem. by Z Lai (2012) -
Ong, W. J.; Gui, M. M.; Chai, S. P.; Mohamed, A. R. Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation. RSC Adv. 2013, 3, 4505–4509.
(
10.1039/c3ra00030c
) / RSC Adv. by W J Ong (2013) -
Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.
(
10.1038/nnano.2009.58
) / Nat. Nanotechnol. by S Park (2009) -
Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.
(
10.1126/science.1158877
) / Science by A K Geim (2009) -
Shen, J.; Shi, M.; Yan, B.; Ma, H.; Li, N.; Ye, M. Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites. Nano Res. 2011, 4, 795–806.
(
10.1007/s12274-011-0136-7
) / Nano Res. by J Shen (2011) -
Zhang, Y.; Tang, Z. R.; Fu, X.; Xu, Y. J. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: What advantage does graphene have over its forebear carbon nanotube? ACS Nano 2011, 5, 7426–7435.
(
10.1021/nn202519j
) / ACS Nano by Y Zhang (2011) -
Tan, L. L.; Ong, W. J.; Chai, S. P.; Mohamed, A. R. Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res. Lett. 2013, 8, 465.
(
10.1186/1556-276X-8-465
) / Nanoscale Res. Lett. by L L Tan (2013) -
Chen, C.; Cai, W.; Long, M.; Zhou, B.; Wu, Y.; Wu, D.; Feng, Y. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 2010, 4, 6425–6432.
(
10.1021/nn102130m
) / ACS Nano by C Chen (2010) -
Li, Q.; Guo, B.; Yu, J.; Ran, J.; Zhang, B.; Yan, H.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884.
(
10.1021/ja2025454
) / J. Am. Chem. Soc. by Q Li (2011) -
Perera, S. D.; Mariano, R. G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus Jr, K. J. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2012, 2, 949–956.
(
10.1021/cs200621c
) / ACS Catal. by S D Perera (2012) -
Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y.; Lee, Y. H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992.
(
10.1002/adfm.200900167
) / Adv. Funct. Mater. by H J Shin (2009) -
Liang, Y. T.; Vijayan, B. K.; Gray, K. A.; Hersam, M. C. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett. 2011, 11, 2865–2870.
(
10.1021/nl2012906
) / Nano Lett. by Y T Liang (2011) -
Wang, P.; Zhai, Y.; Wang, D.; Dong, S. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties. Nanoscale 2011, 3, 1640–1645.
(
10.1039/c0nr00714e
) / Nanoscale by P Wang (2011) -
Xiang, Q.; Lv, K.; Yu, J. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Appl. Catal. B 2010, 96, 557–564.
(
10.1016/j.apcatb.2010.03.020
) / Appl. Catal. B by Q Xiang (2010) -
Ye, L.; Liu, J.; Tian, L.; Peng, T.; Zan, L. The replacement of {101} by {010} facets inhibits the photocatalytic activity of anatase TiO2. Appl. Catal. B 2013, 134–135, 60–65.
(
10.1016/j.apcatb.2012.12.043
) / Appl. Catal. B by L Ye (2013) -
Yu, J.; Dai, G.; Xiang, Q.; Jaroniec, M. Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets. J. Mater. Chem. 2011, 21, 1049–1057.
(
10.1039/C0JM02217A
) / J. Mater. Chem. by J Yu (2011) -
Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.
(
10.1021/ja8092373
) / J. Am. Chem. Soc. by X Han (2009) -
Zhang, Y.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Improving the photocatalytic performance of graphene-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Phys. Chem. Chem. Phys. 2012, 14, 9167–9175.
(
10.1039/c2cp41318c
) / Phys. Chem. Chem. Phys. by Y Zhang (2012) -
Štengl, V.; Popelková, D.; Vláčil, P. TiO2-graphene nanocomposite as high performace photocatalysts. J. Phys. Chem. C 2011, 115, 25209–25218.
(
10.1021/jp207515z
) / J. Phys. Chem. C by V Štengl (2011) -
Fresno, F.; Tudela, D.; Coronado, J. M.; Fernandez-Garcia, M.; Hungria, A. B.; Soria, J. Influence of Sn4+ on the structural and electronic properties of Ti1–x SnxO2 nanoparticles used as photocatalysts. Phys. Chem. Chem. Phys. 2006, 8, 2421–2430.
(
10.1039/B601920J
) / Phys. Chem. Chem. Phys. by F Fresno (2006) -
Sahoo, S.; Arora, A. K.; Sridharan, V. Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals. J. Phys. Chem. C 2009, 113, 16927–16933.
(
10.1021/jp9046193
) / J. Phys. Chem. C by S Sahoo (2009) -
Lu, T.; Zhang, R.; Hu, C.; Chen, F.; Duo, S.; Hu, Q. TiO2-graphene composites with exposed {001} facets produced by a one-pot solvothermal approach for high performance photocatalyst. Phys. Chem. Chem. Phys. 2013, 15, 12963–12970.
(
10.1039/c3cp50942g
) / Phys. Chem. Chem. Phys. by T Lu (2013) -
Gu, L.; Wang, J.; Cheng, H.; Zhao, Y.; Liu, L.; Han, X. One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Appl. Mater. Inter. 2013, 5, 3085–3093.
(
10.1021/am303274t
) / ACS Appl. Mater. Inter. by L Gu (2013) -
Wang, W. S.; Wang, D. H.; Qu, W. G.; Lu, L. Q.; Xu, A. W. Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 2012, 116, 19893–19901.
(
10.1021/jp306498b
) / J. Phys. Chem. C by W S Wang (2012) -
Chen, Z.; Liu, S.; Yang, M. Q.; Xu, Y. J. Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Appl. Mater. Inter. 2013, 5, 4309–4319.
(
10.1021/am4010286
) / ACS Appl. Mater. Inter. by Z Chen (2013) -
Sun, L.; Zhao, Z.; Zhou, Y.; Liu, L. Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 2012, 4, 613–620.
(
10.1039/C1NR11411E
) / Nanoscale by L Sun (2012) -
Wu, J. M.; Tang, M. L. One-pot synthesis of N-F-Cr-doped anatase TiO2 microspheres with nearly all-(001) surface for enhanced solar absorption. Nanoscale 2011, 3, 3915–3922.
(
10.1039/c1nr10737b
) / Nanoscale by J M Wu (2011) -
Xiang, Q.; Yu, J.; Wang, W.; Jaroniec, M. Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chem. Commun. 2011, 47, 6906–6908.
(
10.1039/c1cc11740h
) / Chem. Commun. by Q Xiang (2011) -
Xiang, Q.; Yu, J.; Jaroniec, M. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 2010, 13, 4853–4861.
(
10.1039/C0CP01459A
) / Phys. Chem. Chem. Phys. by Q Xiang (2010) -
Zhao, L.; Chen, X.; Wang, X.; Zhang, Y.; Wei, W.; Sun, Y.; Antonietti, M.; Titirici, M. M. One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv. Mater. 2010, 22, 3317–3321.
(
10.1002/adma.201000660
) / Adv. Mater. by L Zhao (2010) -
Liu, H.; Wu, Y.; Zhang, J. A new approach toward carbon-modified vanadium-doped titanium dioxide photocatalysts. ACS Appl. Mater. Inter. 2011, 3, 1757–1764.
(
10.1021/am200248q
) / ACS Appl. Mater. Inter. by H Liu (2011) -
Xiang, Q.; Yu, J.; Jaroniec, M. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 2011, 3, 3670–3678.
(
10.1039/c1nr10610d
) / Nanoscale by Q Xiang (2011) -
Tu, W.; Zhou, Y.; Liu, Q.; Yan, S.; Bao, S.; Wang, X.; Xiao, M.; Zou, Z. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: Graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv. Funct. Mater. 2013, 23, 1743–1749.
(
10.1002/adfm.201202349
) / Adv. Funct. Mater. by W Tu (2013) -
Liu, G.; Yang, H. G.; Wang, X.; Cheng, L.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868–12869.
(
10.1021/ja903463q
) / J. Am. Chem. Soc. by G Liu (2009) -
Liu, G.; Sun, C.; C. Smith, S.; Wang, L.; Lu, G. Q.; Cheng, H. M. Sulfur doped anatase TiO2 single crystals with a high percentage of {001} facets. J. Colloid Interf. Sci. 2010, 349, 477–483.
(
10.1016/j.jcis.2010.05.076
) / J. Colloid Interf. Sci. by G Liu (2010) -
Liu, G.; Wang, L.; Sun, C.; Yan, X.; Wang, X.; Chen, Z.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates. Chem. Mater. 2009, 21, 1266–1274.
(
10.1021/cm802986r
) / Chem. Mater. by G Liu (2009) -
Zhang, N.; Zhang, Y.; Pan, X.; Fu, X.; Liu, S.; Xu, Y. J. Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions. J. Phys. Chem. C 2011, 115, 23501–23511.
(
10.1021/jp208661n
) / J. Phys. Chem. C by N Zhang (2011) -
Yu, J.; Li, Q.; Liu, S.; Jaroniec, M. Ionic-liquid-assisted synthesis of uniform fluorinated B/C-codoped TiO2 nanocrystals and their enhanced visible-light photocatalytic activity. Chem.—Eur. J. 2013, 19, 2433–2441.
(
10.1002/chem.201202778
) / Chem.—Eur. J. by J Yu (2013) -
Zhang, J.; Wu, Y.; Xing, M.; Leghari, S. A. K.; Sajjad, S. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 2010, 3, 715–726.
(
10.1039/b927575d
) / Energy Environ. Sci. by J Zhang (2010) -
Lv, X. J.; Zhou, S. X.; Zhang, C.; Chang, H. X.; Chen, Y.; Fu, W. F. Synergetic effect of Cu and graphene as cocatalyst on TiO2 for enhanced photocatalytic hydrogen evolution from solar water splitting. J. Mater. Chem. 2012, 22, 18542–18549.
(
10.1039/c2jm33325b
) / J. Mater. Chem. by X J Lv (2012) -
Wang, D. H.; Jia, L.; Wu, X. L.; Lu, L. Q.; Xu, A. W. One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 2012, 4, 576–584.
(
10.1039/C1NR11353D
) / Nanoscale by D H Wang (2012) -
Roy, N.; Sohn, Y.; Pradhan, D. Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis. ACS Nano 2013, 7, 2532–2540.
(
10.1021/nn305877v
) / ACS Nano by N Roy (2013) -
Tahir, M.; Amin, N. S. Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites. Appl. Catal. B 2013, 142–143, 512–522.
(
10.1016/j.apcatb.2013.05.054
) / Appl. Catal. B by M Tahir (2013) -
Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. A 2014, 2, 3407–3416.
(
10.1039/c3ta14493c
) / J. Mater. Chem. A by J Yu (2014) -
Li, X.; Zhuang, Z.; Li, W.; Pan, H. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl. Catal. A 2012, 429–430, 31–38.
(
10.1016/j.apcata.2012.04.001
) / Appl. Catal. A by X Li (2012)
Dates
Type | When |
---|---|
Created | 11 years ago (Aug. 22, 2014, 3:27 p.m.) |
Deposited | 8 months, 2 weeks ago (Dec. 12, 2024, 6:08 p.m.) |
Indexed | 1 week ago (Aug. 19, 2025, 6:58 a.m.) |
Issued | 11 years ago (Aug. 23, 2014) |
Published | 11 years ago (Aug. 23, 2014) |
Published Online | 11 years ago (Aug. 23, 2014) |
Published Print | 10 years, 10 months ago (Oct. 1, 2014) |
@article{Ong_2014, title={Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane}, volume={7}, ISSN={1998-0000}, url={http://dx.doi.org/10.1007/s12274-014-0514-z}, DOI={10.1007/s12274-014-0514-z}, number={10}, journal={Nano Research}, publisher={Tsinghua University Press}, author={Ong, Wee-Jun and Tan, Lling-Lling and Chai, Siang-Piao and Yong, Siek-Ting and Mohamed, Abdul Rahman}, year={2014}, month=aug, pages={1528–1547} }