Crossref journal-article
Tsinghua University Press
Nano Research (11138)
Bibliography

Ong, W.-J., Tan, L.-L., Chai, S.-P., Yong, S.-T., & Mohamed, A. R. (2014). Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Research, 7(10), 1528–1547.

Authors 5
  1. Wee-Jun Ong (first)
  2. Lling-Lling Tan (additional)
  3. Siang-Piao Chai (additional)
  4. Siek-Ting Yong (additional)
  5. Abdul Rahman Mohamed (additional)
References 56 Referenced 244
  1. Hsu, H. C.; Shown, I.; Wei, H. Y.; Chang, Y. C.; Du, H. Y.; Lin, Y. G.; Tseng, C. A.; Wang, C. H.; Chen, L. C.; Lin, Y. C.; Chen, K. H. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 2013, 5, 262–268. (10.1039/C2NR31718D) / Nanoscale by H C Hsu (2013)
  2. Liou, P. Y.; Chen, S. C.; Wu, J. C. S.; Liu, D.; Mackintosh, S.; Maroto-Valer, M.; Linforth, R. Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy Environ. Sci. 2011, 4, 1487–1494. (10.1039/c0ee00609b) / Energy Environ. Sci. by P Y Liou (2011)
  3. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372–7408. (10.1002/anie.201207199) / Angew. Chem. Int. Ed. by S N Habisreutinger (2013)
  4. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. (10.1038/238037a0) / Nature by A Fujishima (1972)
  5. Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 2009, 9, 731–737. (10.1021/nl803258p) / Nano Lett. by O K Varghese (2009)
  6. Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758. (10.1021/cr00035a013) / Chem. Rev. by A L Linsebigler (1995)
  7. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641. (10.1038/nature06964) / Nature by H G Yang (2008)
  8. Yu, J.; Qi, L.; Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 2010, 114, 13118–13125. (10.1021/jp104488b) / J. Phys. Chem. C by J Yu (2010)
  9. Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Facet-dependent photocatalytic properties of TiO2-based composites for energy conversion and environmental remediation. ChemSusChem 2014, 7, 690–719. (10.1002/cssc.201300924) / ChemSusChem by W J Ong (2014)
  10. Xu, H.; Ouyang, S.; Li, P.; Kako, T.; Ye, J. High-active anatase TiO2 nanosheets exposed with 95% {100{ facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl. Mater. Inter. 2013, 5, 1348–1354. (10.1021/am302631b) / ACS Appl. Mater. Inter. by H Xu (2013)
  11. Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Highly reactive {001} facets of TiO2-based composites: Synthesis, formation mechanism and characterizations. Nanoscale 2014, 6, 1946–2008. (10.1039/c3nr04655a) / Nanoscale by W J Ong (2014)
  12. Lai, Z.; Peng, F.; Wang, Y.; Wang, H.; Yu, H.; Liu, P.; Zhao, H. Low temperature solvothermal synthesis of anatase TiO2 single crystals with wholly {100} and {001} faceted surfaces. J. Mater. Chem. 2012, 22, 23906–23912. (10.1039/c2jm34880b) / J. Mater. Chem. by Z Lai (2012)
  13. Ong, W. J.; Gui, M. M.; Chai, S. P.; Mohamed, A. R. Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation. RSC Adv. 2013, 3, 4505–4509. (10.1039/c3ra00030c) / RSC Adv. by W J Ong (2013)
  14. Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224. (10.1038/nnano.2009.58) / Nat. Nanotechnol. by S Park (2009)
  15. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. (10.1126/science.1158877) / Science by A K Geim (2009)
  16. Shen, J.; Shi, M.; Yan, B.; Ma, H.; Li, N.; Ye, M. Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites. Nano Res. 2011, 4, 795–806. (10.1007/s12274-011-0136-7) / Nano Res. by J Shen (2011)
  17. Zhang, Y.; Tang, Z. R.; Fu, X.; Xu, Y. J. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: What advantage does graphene have over its forebear carbon nanotube? ACS Nano 2011, 5, 7426–7435. (10.1021/nn202519j) / ACS Nano by Y Zhang (2011)
  18. Tan, L. L.; Ong, W. J.; Chai, S. P.; Mohamed, A. R. Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res. Lett. 2013, 8, 465. (10.1186/1556-276X-8-465) / Nanoscale Res. Lett. by L L Tan (2013)
  19. Chen, C.; Cai, W.; Long, M.; Zhou, B.; Wu, Y.; Wu, D.; Feng, Y. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 2010, 4, 6425–6432. (10.1021/nn102130m) / ACS Nano by C Chen (2010)
  20. Li, Q.; Guo, B.; Yu, J.; Ran, J.; Zhang, B.; Yan, H.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884. (10.1021/ja2025454) / J. Am. Chem. Soc. by Q Li (2011)
  21. Perera, S. D.; Mariano, R. G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus Jr, K. J. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2012, 2, 949–956. (10.1021/cs200621c) / ACS Catal. by S D Perera (2012)
  22. Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y.; Lee, Y. H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992. (10.1002/adfm.200900167) / Adv. Funct. Mater. by H J Shin (2009)
  23. Liang, Y. T.; Vijayan, B. K.; Gray, K. A.; Hersam, M. C. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett. 2011, 11, 2865–2870. (10.1021/nl2012906) / Nano Lett. by Y T Liang (2011)
  24. Wang, P.; Zhai, Y.; Wang, D.; Dong, S. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties. Nanoscale 2011, 3, 1640–1645. (10.1039/c0nr00714e) / Nanoscale by P Wang (2011)
  25. Xiang, Q.; Lv, K.; Yu, J. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Appl. Catal. B 2010, 96, 557–564. (10.1016/j.apcatb.2010.03.020) / Appl. Catal. B by Q Xiang (2010)
  26. Ye, L.; Liu, J.; Tian, L.; Peng, T.; Zan, L. The replacement of {101} by {010} facets inhibits the photocatalytic activity of anatase TiO2. Appl. Catal. B 2013, 134–135, 60–65. (10.1016/j.apcatb.2012.12.043) / Appl. Catal. B by L Ye (2013)
  27. Yu, J.; Dai, G.; Xiang, Q.; Jaroniec, M. Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets. J. Mater. Chem. 2011, 21, 1049–1057. (10.1039/C0JM02217A) / J. Mater. Chem. by J Yu (2011)
  28. Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153. (10.1021/ja8092373) / J. Am. Chem. Soc. by X Han (2009)
  29. Zhang, Y.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Improving the photocatalytic performance of graphene-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Phys. Chem. Chem. Phys. 2012, 14, 9167–9175. (10.1039/c2cp41318c) / Phys. Chem. Chem. Phys. by Y Zhang (2012)
  30. Štengl, V.; Popelková, D.; Vláčil, P. TiO2-graphene nanocomposite as high performace photocatalysts. J. Phys. Chem. C 2011, 115, 25209–25218. (10.1021/jp207515z) / J. Phys. Chem. C by V Štengl (2011)
  31. Fresno, F.; Tudela, D.; Coronado, J. M.; Fernandez-Garcia, M.; Hungria, A. B.; Soria, J. Influence of Sn4+ on the structural and electronic properties of Ti1–x SnxO2 nanoparticles used as photocatalysts. Phys. Chem. Chem. Phys. 2006, 8, 2421–2430. (10.1039/B601920J) / Phys. Chem. Chem. Phys. by F Fresno (2006)
  32. Sahoo, S.; Arora, A. K.; Sridharan, V. Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals. J. Phys. Chem. C 2009, 113, 16927–16933. (10.1021/jp9046193) / J. Phys. Chem. C by S Sahoo (2009)
  33. Lu, T.; Zhang, R.; Hu, C.; Chen, F.; Duo, S.; Hu, Q. TiO2-graphene composites with exposed {001} facets produced by a one-pot solvothermal approach for high performance photocatalyst. Phys. Chem. Chem. Phys. 2013, 15, 12963–12970. (10.1039/c3cp50942g) / Phys. Chem. Chem. Phys. by T Lu (2013)
  34. Gu, L.; Wang, J.; Cheng, H.; Zhao, Y.; Liu, L.; Han, X. One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Appl. Mater. Inter. 2013, 5, 3085–3093. (10.1021/am303274t) / ACS Appl. Mater. Inter. by L Gu (2013)
  35. Wang, W. S.; Wang, D. H.; Qu, W. G.; Lu, L. Q.; Xu, A. W. Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 2012, 116, 19893–19901. (10.1021/jp306498b) / J. Phys. Chem. C by W S Wang (2012)
  36. Chen, Z.; Liu, S.; Yang, M. Q.; Xu, Y. J. Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Appl. Mater. Inter. 2013, 5, 4309–4319. (10.1021/am4010286) / ACS Appl. Mater. Inter. by Z Chen (2013)
  37. Sun, L.; Zhao, Z.; Zhou, Y.; Liu, L. Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 2012, 4, 613–620. (10.1039/C1NR11411E) / Nanoscale by L Sun (2012)
  38. Wu, J. M.; Tang, M. L. One-pot synthesis of N-F-Cr-doped anatase TiO2 microspheres with nearly all-(001) surface for enhanced solar absorption. Nanoscale 2011, 3, 3915–3922. (10.1039/c1nr10737b) / Nanoscale by J M Wu (2011)
  39. Xiang, Q.; Yu, J.; Wang, W.; Jaroniec, M. Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chem. Commun. 2011, 47, 6906–6908. (10.1039/c1cc11740h) / Chem. Commun. by Q Xiang (2011)
  40. Xiang, Q.; Yu, J.; Jaroniec, M. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 2010, 13, 4853–4861. (10.1039/C0CP01459A) / Phys. Chem. Chem. Phys. by Q Xiang (2010)
  41. Zhao, L.; Chen, X.; Wang, X.; Zhang, Y.; Wei, W.; Sun, Y.; Antonietti, M.; Titirici, M. M. One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv. Mater. 2010, 22, 3317–3321. (10.1002/adma.201000660) / Adv. Mater. by L Zhao (2010)
  42. Liu, H.; Wu, Y.; Zhang, J. A new approach toward carbon-modified vanadium-doped titanium dioxide photocatalysts. ACS Appl. Mater. Inter. 2011, 3, 1757–1764. (10.1021/am200248q) / ACS Appl. Mater. Inter. by H Liu (2011)
  43. Xiang, Q.; Yu, J.; Jaroniec, M. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 2011, 3, 3670–3678. (10.1039/c1nr10610d) / Nanoscale by Q Xiang (2011)
  44. Tu, W.; Zhou, Y.; Liu, Q.; Yan, S.; Bao, S.; Wang, X.; Xiao, M.; Zou, Z. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: Graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv. Funct. Mater. 2013, 23, 1743–1749. (10.1002/adfm.201202349) / Adv. Funct. Mater. by W Tu (2013)
  45. Liu, G.; Yang, H. G.; Wang, X.; Cheng, L.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868–12869. (10.1021/ja903463q) / J. Am. Chem. Soc. by G Liu (2009)
  46. Liu, G.; Sun, C.; C. Smith, S.; Wang, L.; Lu, G. Q.; Cheng, H. M. Sulfur doped anatase TiO2 single crystals with a high percentage of {001} facets. J. Colloid Interf. Sci. 2010, 349, 477–483. (10.1016/j.jcis.2010.05.076) / J. Colloid Interf. Sci. by G Liu (2010)
  47. Liu, G.; Wang, L.; Sun, C.; Yan, X.; Wang, X.; Chen, Z.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates. Chem. Mater. 2009, 21, 1266–1274. (10.1021/cm802986r) / Chem. Mater. by G Liu (2009)
  48. Zhang, N.; Zhang, Y.; Pan, X.; Fu, X.; Liu, S.; Xu, Y. J. Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions. J. Phys. Chem. C 2011, 115, 23501–23511. (10.1021/jp208661n) / J. Phys. Chem. C by N Zhang (2011)
  49. Yu, J.; Li, Q.; Liu, S.; Jaroniec, M. Ionic-liquid-assisted synthesis of uniform fluorinated B/C-codoped TiO2 nanocrystals and their enhanced visible-light photocatalytic activity. Chem.—Eur. J. 2013, 19, 2433–2441. (10.1002/chem.201202778) / Chem.—Eur. J. by J Yu (2013)
  50. Zhang, J.; Wu, Y.; Xing, M.; Leghari, S. A. K.; Sajjad, S. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 2010, 3, 715–726. (10.1039/b927575d) / Energy Environ. Sci. by J Zhang (2010)
  51. Lv, X. J.; Zhou, S. X.; Zhang, C.; Chang, H. X.; Chen, Y.; Fu, W. F. Synergetic effect of Cu and graphene as cocatalyst on TiO2 for enhanced photocatalytic hydrogen evolution from solar water splitting. J. Mater. Chem. 2012, 22, 18542–18549. (10.1039/c2jm33325b) / J. Mater. Chem. by X J Lv (2012)
  52. Wang, D. H.; Jia, L.; Wu, X. L.; Lu, L. Q.; Xu, A. W. One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 2012, 4, 576–584. (10.1039/C1NR11353D) / Nanoscale by D H Wang (2012)
  53. Roy, N.; Sohn, Y.; Pradhan, D. Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis. ACS Nano 2013, 7, 2532–2540. (10.1021/nn305877v) / ACS Nano by N Roy (2013)
  54. Tahir, M.; Amin, N. S. Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites. Appl. Catal. B 2013, 142–143, 512–522. (10.1016/j.apcatb.2013.05.054) / Appl. Catal. B by M Tahir (2013)
  55. Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. A 2014, 2, 3407–3416. (10.1039/c3ta14493c) / J. Mater. Chem. A by J Yu (2014)
  56. Li, X.; Zhuang, Z.; Li, W.; Pan, H. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl. Catal. A 2012, 429–430, 31–38. (10.1016/j.apcata.2012.04.001) / Appl. Catal. A by X Li (2012)
Dates
Type When
Created 11 years ago (Aug. 22, 2014, 3:27 p.m.)
Deposited 8 months, 2 weeks ago (Dec. 12, 2024, 6:08 p.m.)
Indexed 1 week ago (Aug. 19, 2025, 6:58 a.m.)
Issued 11 years ago (Aug. 23, 2014)
Published 11 years ago (Aug. 23, 2014)
Published Online 11 years ago (Aug. 23, 2014)
Published Print 10 years, 10 months ago (Oct. 1, 2014)
Funders 0

None

@article{Ong_2014, title={Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane}, volume={7}, ISSN={1998-0000}, url={http://dx.doi.org/10.1007/s12274-014-0514-z}, DOI={10.1007/s12274-014-0514-z}, number={10}, journal={Nano Research}, publisher={Tsinghua University Press}, author={Ong, Wee-Jun and Tan, Lling-Lling and Chai, Siang-Piao and Yong, Siek-Ting and Mohamed, Abdul Rahman}, year={2014}, month=aug, pages={1528–1547} }