Crossref journal-article
Tsinghua University Press
Nano Research (11138)
Bibliography

Liu, B., Wang, X., Liu, B., Wang, Q., Tan, D., Song, W., Hou, X., Chen, D., & Shen, G. (2013). Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Research, 6(7), 525–534.

Authors 9
  1. Bin Liu (first)
  2. Xianfu Wang (additional)
  3. Boyang Liu (additional)
  4. Qiufan Wang (additional)
  5. Dongsheng Tan (additional)
  6. Weifeng Song (additional)
  7. Xiaojuan Hou (additional)
  8. Di Chen (additional)
  9. Guozhen Shen (additional)
References 40 Referenced 112
  1. Scrosati, B. Paper powers battery breakthrough. Nat. Nanotechnol. 2007, 2, 598–599. (10.1038/nnano.2007.318) / Nat. Nanotechnol. by B Scrosati (2007)
  2. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. (10.1038/35035045) / Nature by P Poizot (2000)
  3. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647. (10.1021/nl200658a) / Nano Lett. by H L Wang (2011)
  4. Lu, J.; Nan, C. Y.; Li, L. H.; Peng, Q.; Li, Y. D. Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 2013, 6, 55–64. (10.1007/s12274-012-0281-7) / Nano Res. by J Lu (2013)
  5. Seng, K. H.; Park, M. H.; Guo, Z. P.; Liu, H. K.; Cho, J. Self-assembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery. Angew. Chem. Int. Ed. 2012, 51, 5657–5661. (10.1002/anie.201201488) / Angew. Chem. Int. Ed. by K H Seng (2012)
  6. Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733–737. (10.1007/s12274-010-0037-1) / Nano Res. by X L Xiao (2010)
  7. Yang, Y.; Jeong, S.; Hu, L. B.; Wu, H.; Lee, S. W.; Cui, Y. Transparent lithium-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 13013–13018. (10.1073/pnas.1102873108) / Proc. Natl. Acad. Sci. U.S.A. by Y Yang (2011)
  8. Chen, H. T.; Xu, J.; Chen, P. C.; Fang, X.; Qiu, J.; Fu, Y.; Zhou, C. W. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage. ACS Nano 2011, 5, 8383–8390. (10.1021/nn203166w) / ACS Nano by H T Chen (2011)
  9. Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887. (10.1002/adma.200800627) / Adv. Mater. by Y G Guo (2008)
  10. Cao, F. F.; Deng, J. W.; Xin, S.; Ji, H. X.; Schmidt, O. G.; Wan, L. J.; Guo, Y. G. Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv. Mater. 2011, 23, 4415–4420. (10.1002/adma.201102062) / Adv. Mater. by F F Cao (2011)
  11. Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358. (10.1038/nmat2725) / Nat. Mater. by A Magasinski (2010)
  12. Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911. (10.1002/adma.201200469) / Adv. Mater. by Z Y Wang (2012)
  13. Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needle-like Co3O4 nanotubes and their application as lithium-ion batteries electrodes. Adv. Mater. 2008, 20, 258–262. (10.1002/adma.200702412) / Adv. Mater. by X W Lou (2008)
  14. Wei, J.; Yue, Q.; Sun, Z. K.; Deng, Y. H.; Zhao, D. Y. Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates. Angew. Chem. Int. Ed. 2012, 51, 6149–6153. (10.1002/anie.201202232) / Angew. Chem. Int. Ed. by J Wei (2012)
  15. Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Chen, P. C.; Badmaev, A.; De Arco, L. G.; Shen, G. Z.; Zhou, C. W. ACS Nano 2009, 3, 73–79. (10.1021/nn800434d) / ACS Nano by F N Ishikawa (2009)
  16. Liu, B.; Wang, X. F.; Chen, H. T.; Wang, Z. R.; Chen, D.; Cheng, Y. B.; Zhou, C. W.; Shen, G. Z. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Sci. Rep. 2013, 3, 1622. (10.1038/srep01622) / Sci. Rep. by B Liu (2013)
  17. Wang, Z. R.; Wang, H.; Liu, B.; Qiu, W. Z.; Zhang, J.; Ran, S. H.; Huang, H. T.; Xu, J.; Han, H. W.; Chen, D.; Shen, G. Z. Highly ordered TiO2 macropore arrays as transparent photocatalysts. ACS Nano 2011, 5, 8412–8419. (10.1021/nn203315k) / ACS Nano by Z R Wang (2011)
  18. Liu, B.; Wang, Z. R.; Dong, Y.; Zhu, Y. G.; Gong, Y.; Ran, S. H.; Liu, Z.; Xu, J.; Xie, Z.; Chen, D.; Shen, G. Z. ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts. J. Mater. Chem. 2012, 22, 9379–9384. (10.1039/c2jm16781f) / J. Mater. Chem. by B Liu (2012)
  19. Tripathi, R.; Ramesh, T. N.; Ellis, B. L.; Nazar, L. F. Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew. Chem. Int. Ed. 2010, 49, 8738–8742. (10.1002/anie.201003743) / Angew. Chem. Int. Ed. by R Tripathi (2010)
  20. Hossain, S.; Kim, Y. K.; Saleh, Y.; Loutfy, R. Comparative studies of MCMB and C/C composite as anodes for lithiumion battery systems. J. Power Sources 2003, 114, 264–276. (10.1016/S0378-7753(02)00588-8) / J. Power Sources by S Hossain (2003)
  21. Wang, G. X.; Liu, H.; Liu, J.; Qiao, S. Z.; Lu, G. M.; Munroe, P.; Ahn, H. Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater. 2010, 22, 4944–4948. (10.1002/adma.201002045) / Adv. Mater. by G X Wang (2010)
  22. Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Adelhelm, P.; Drummond, C. J. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem. Mater. 2009, 21, 5300–5306. (10.1021/cm9024167) / Chem. Mater. by C M Doherty (2009)
  23. Luo, J. Y.; Xia, Y. Y. Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv. Funct. Mater. 2007, 17, 3877–3884. (10.1002/adfm.200700638) / Adv. Funct. Mater. by J Y Luo (2007)
  24. Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices. Adv. Mater. 2009, 21, 2710–2714. (10.1002/adma.200802998) / Adv. Mater. by X L Wu (2009)
  25. Chen, J. S.; Lou, X. W. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small, in press, DOI: 10.1002/smll.201202601. (10.1002/smll.201202601)
  26. Sharma, Y.; Sharma, N.; Rao, G.; Chowdari, B. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2855–2861. (10.1002/adfm.200600997) / Adv. Funct. Mater. by Y Sharma (2007)
  27. Deng, D.; Lee, J. Y. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage. Nanotechnology 2011, 22, 355401. (10.1088/0957-4484/22/35/355401) / Nanotechnology by D Deng (2011)
  28. Hu, L. L.; Qu, B. H.; Li, C. C.; Chen, Y. J.; Mei, L.; Lei, D. N.; Chen, L. B.; Li, Q. H.; Wang, T. H. Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. J. Mater. Chem. A 2013, 1, 5596–5602. (10.1039/c3ta00085k) / J. Mater. Chem. A by L L Hu (2013)
  29. Qiu, Y. C.; Yang, S. H.; Deng, H.; Jin, L. M.; Li, W. S. A novel nanostructured spinel ZnCo2O4 electrode material: Morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J. Mater. Chem. 2010, 20, 4439–4444. (10.1039/c0jm00101e) / J. Mater. Chem. by Y C Qiu (2010)
  30. Du, N.; Xu, Y. F.; Zhang, H.; Yu, J. X.; Zhai, C. X.; Yang, D. R. Porous ZnCo2O4 nanowires synthesis via sacrificial templates: High-performance anode material of Li-ion batteries. Inorg. Chem. 2011, 50, 3320–3324. (10.1021/ic102129w) / Inorg. Chem. by N Du (2011)
  31. Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011. (10.1021/nl300794f) / Nano Lett. by B Liu (2012)
  32. Wang, Y.; Zhang, H. J.; Lu, L.; Stubbs, L. P.; Wong, C. C.; Lin. J. Y. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 2010, 4, 4753–4761. (10.1021/nn1004183) / ACS Nano by Y Wang (2010)
  33. Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 2006, 18, 2619–2623. (10.1002/adma.200600445) / Adv. Mater. by Y G Wang (2006)
  34. Yuan, C. Z.; Zhang, X. G.; Hou, L. R.; Shen, L. F.; Li, D. K.; Zhang, F.; Fan, C. G.; Li, J. M. Lysine-assisted hydrothermal synthesis of urchin-like order arrays of mesoporous Co(OH)2 nanowires and their application in electrochemical capacitors. J. Mater. Chem. 2010, 20, 10809–10816. (10.1039/c0jm02174a) / J. Mater. Chem. by C Z Yuan (2010)
  35. Li, B. X.; Rong, G. X.; Xie, Y.; Huang, L. F.; Feng, C. Q. Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg. Chem. 2006, 45, 6404–6410. (10.1021/ic0606274) / Inorg. Chem. by B X Li (2006)
  36. Xu, M. W.; Kong, L. B.; Zhou, W. J.; Li, H. L. Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J. Phys. Chem. C 2007, 111, 19141–19147. (10.1021/jp076730b) / J. Phys. Chem. C by M W Xu (2007)
  37. Han, C. H.; Pi, Y. Q.; An, Q. Y.; Mai, L. Q.; Xie, J. L.; Xu, X.; Xu, L.; Zhao, Y. L.; Niu, C. J.; Khan, A. M.; He, X. Y. Substrate-assisted self-organization of radial β-AgVO3 nanowire clusters for high rate rechargeable lithium batteries. Nano Lett. 2012, 12, 4668–4673. (10.1021/nl301993v) / Nano Lett. by C H Han (2012)
  38. Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and addembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888. (10.1126/science.1122716) / Science by K T Nam (2006)
  39. Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B. TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 2006, 18, 2597–2600. (10.1002/adma.200601232) / Adv. Mater. by G Armstrong (2006)
  40. Hassoun, J.; Lee, K. S.; Sun, Y. K.; Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 2011, 133, 3139–3143. (10.1021/ja110522x) / J. Am. Chem. Soc. by J Hassoun (2011)
Dates
Type When
Created 12 years, 2 months ago (June 1, 2013, 1:21 a.m.)
Deposited 8 months, 2 weeks ago (Dec. 12, 2024, 6:07 p.m.)
Indexed 3 weeks, 1 day ago (Aug. 7, 2025, 4:45 p.m.)
Issued 12 years, 2 months ago (June 1, 2013)
Published 12 years, 2 months ago (June 1, 2013)
Published Online 12 years, 2 months ago (June 1, 2013)
Published Print 12 years, 1 month ago (July 1, 2013)
Funders 0

None

@article{Liu_2013, title={Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes}, volume={6}, ISSN={1998-0000}, url={http://dx.doi.org/10.1007/s12274-013-0329-3}, DOI={10.1007/s12274-013-0329-3}, number={7}, journal={Nano Research}, publisher={Tsinghua University Press}, author={Liu, Bin and Wang, Xianfu and Liu, Boyang and Wang, Qiufan and Tan, Dongsheng and Song, Weifeng and Hou, Xiaojuan and Chen, Di and Shen, Guozhen}, year={2013}, month=jun, pages={525–534} }