Crossref journal-article
Tsinghua University Press
Nano Research (11138)
Bibliography

Xiao, Q., Weng, D., Yang, Z., Garay, J., Zhang, M., & Lu, Y. (2010). Efficient synthesis of PbTe nanoparticle networks. Nano Research, 3(10), 685–693.

Authors 6
  1. Qiangfeng Xiao (first)
  2. Ding Weng (additional)
  3. Zhenglong Yang (additional)
  4. Javier Garay (additional)
  5. Minjuan Zhang (additional)
  6. Yunfeng Lu (additional)
References 36 Referenced 19
  1. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937. (10.1126/science.271.5251.933) / Science by A. P. Alivisatos (1996)
  2. Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447. (10.1007/s12274-009-9047-2) / Nano Res. by X. G. Peng (2009)
  3. Jun, Y. W.; Choi, J. S.; Cheon, J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 2006, 45, 3414–3439. (10.1002/anie.200503821) / Angew. Chem. Int. Ed. by Y. W. Jun (2006)
  4. Par, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 4630–4660. (10.1002/anie.200603148) / Angew. Chem. Int. Ed. by J. Par (2007)
  5. Burda, C.; Chen, X. B.; Naryanna, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102. (10.1021/cr030063a) / Chem. Rev. by C. Burda (2005)
  6. Korgel, B. A.; Fitzmaurice, D. Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater. 1998, 10, 661–665. (10.1002/(SICI)1521-4095(199806)10:9<661::AID-ADMA661>3.0.CO;2-L) / Adv. Mater. by B. A. Korgel (1998)
  7. Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188–1191. (10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5) / Angew. Chem. Int. Ed. by C. Pacholski (2002)
  8. Yu, J. H.; Joo, J.; Park, H. M.; Baik, S.; Kim, Y. W.; Kim, S. C.; Hyeon, T. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 2005, 127, 5662–5670. (10.1021/ja044593f) / J. Am. Chem. Soc. by J. H. Yu (2005)
  9. Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147. (10.1021/ja050107s) / J. Am. Chem. Soc. by K. S. Cho (2005)
  10. Tai, G. A.; Guo, W. L.; Zhang, Z. H. Hydrothermal synthesis and thermoelectric transport properties of uniform singlecrystalline pearl-necklace-shaped PbTe nanowires. Cryst. Growth Des. 2008, 8, 2906–2911. (10.1021/cg701262x) / Cryst. Growth Des. by G. A. Tai (2008)
  11. Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240. (10.1126/science.1072086) / Science by Z. Y. Tang (2002)
  12. Kim, F.; Kwan, S.; Akana, J.; Yang, P. Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 2001, 123, 4360–4361. (10.1021/ja0059138) / J. Am. Chem. Soc. by F. Kim (2001)
  13. Xu, X. X.; Wang, X.; Nisar, A.; Liang, X.; Zhuang, J.; Hu, S.; Zhuang, Y. Combinatorial hierarchically ordered 2D architectures self-assembled from nanocrystal building blocks. Adv. Mater. 2008, 20, 3702–3708. (10.1002/adma.200800215) / Adv. Mater. by X. X. Xu (2008)
  14. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into 3-dimensional quantum-dot superlattices. Science 1995, 270, 1335–1338. (10.1126/science.270.5240.1335) / Science by C. B. Murray (1995)
  15. Nykypanchuk, D.; Maye, M. M.; van der Lelie, D.; Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 2008, 451, 549–552. (10.1038/nature06560) / Nature by D. Nykypanchuk (2008)
  16. Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A. DNA-programmable nanoparticle crystallization. Nature 2008, 451, 553–556. (10.1038/nature06508) / Nature by S. Y. Park (2008)
  17. Ahniyaz, A.; Sakamoto, Y.; Bergstro, L. Magnetic field-induced assembly of oriented superlattice from maghemite nanocubes. Proc. Nat. Acad. Sci. USA 2007, 104, 17570–17574. (10.1073/pnas.0704210104) / Proc. Nat. Acad. Sci. USA by A. Ahniyaz (2007)
  18. Redl, F. X.; Cho, K. S.; Murray, C. B.; O’Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 2003, 423, 968–971. (10.1038/nature01702) / Nature by F. X. Redl (2003)
  19. Shevchenko, E. V.; Talapin, D. V.; Murray, C. B.; O’Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 2006, 128, 3620–3637. (10.1021/ja0564261) / J. Am. Chem. Soc. by E. V. Shevchenko (2006)
  20. Zhang, Y. X.; Zeng, H. C. Gold sponges prepared via hydrothermally activated self-assembly of Au nanoparticles. J. Phys. Chem. C 2007, 111, 6970–6975. (10.1021/jp071481c) / J. Phys. Chem. C by Y. X. Zhang (2007)
  21. Mohanan, J. L.; Arachchige, U. I.; Brock, S. L. Porous semiconductor chalcogenide aerogels. Science 2005, 307, 397–400. (10.1126/science.1104226) / Science by J. L. Mohanan (2005)
  22. Arachchige, U. I.; Brock, S. L. Sol-gel assembly of CdSe nanoparticles to form porous aerogel networks. J. Am. Chem. Soc. 2006, 128, 7964–7971. (10.1021/ja061561e) / J. Am. Chem. Soc. by U. I. Arachchige (2006)
  23. Hanrath, T.; Veldman, D.; Choi, J. J.; Christova, C. G.; Wienk, M. M.; Janssen, R. A. J. PbSe nanocrystal network formation during pyridine ligand displacement. ACS Appl. Mater. Interfaces 2009, 1, 244–250. (10.1021/am8001583) / ACS Appl. Mater. Interfaces by T. Hanrath (2009)
  24. Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Murray, C. B. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. J. Am. Chem. Soc. 2006, 128, 3248–3255. (10.1021/ja058269b) / J. Am. Chem. Soc. by J. J. Urban (2006)
  25. Murphy, J. E.; Beard, M. C.; Norman, A. G.; Ahrenkiel, S. P.; Johnson, J. C.; Yu, P.; Micic, O. I.; Ellingson, R. J.; Nozik, A. J. PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 2006, 128, 3241–3247. (10.1021/ja0574973) / J. Am. Chem. Soc. by J. E. Murphy (2006)
  26. Dughaish, Z. H. Lead telluride as a thermoelectric material for thermoelectric power generation. Physica B 2002, 322, 205–223. (10.1016/S0921-4526(02)01187-0) / Physica B by Z. H. Dughaish (2002)
  27. Sootsman, J. R.; Kong, H.; Uher, C.; D’Angelo, J. J.; Wu, C. I.; Hogan T. P.; Caillat, T.; Kanatzidis, M. G. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew. Chem. Int. Ed. 2008, 45, 8618–8622. (10.1002/anie.200803934) / Angew. Chem. Int. Ed. by J. R. Sootsman (2008)
  28. Zhang, H.; Zhou, Z.; Yang, B. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J. Phys. Chem. B 2003, 107, 8–13. (10.1021/jp025910c) / J. Phys. Chem. B by H. Zhang (2003)
  29. Wang, Q.; Li, H.; Chen, L. Q.; Huang, X. J. Monodispersed hard carbon spherules with uniform nanopores. Carbon 2001, 39, 2211–2214. (10.1016/S0008-6223(01)00040-9) / Carbon by Q. Wang (2001)
  30. Yang, R. Z.; Qiu, X. P.; Zhang, H. R.; Li, J. Q.; Zhu, W. T.; Wang, Z. X.; Huang, X. J.; Chen, L. Q. Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon 2005, 43, 11–16. (10.1016/j.carbon.2004.08.008) / Carbon by R. Z. Yang (2005)
  31. Sun, X. M.; Li, Y. D. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed. 2004, 43, 3827–3831. (10.1002/anie.200353212) / Angew. Chem. Int. Ed. by X. M. Sun (2004)
  32. Sun, X. M.; Li, Y. D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 597–601. (10.1002/anie.200352386) / Angew. Chem. Int. Ed. by X. M. Sun (2004)
  33. Qian, H. S.; Yu, S. H.; Luo, L. B.; Gong, J. Y.; Fei, L. F.; Liu, X. M. Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose. Chem. Mater. 2006, 18, 2102–2108. (10.1021/cm052848y) / Chem. Mater. by H. S. Qian (2006)
  34. Mays, C. W.; Vermaak, J. S.; Kuhlmann-Wilsdorf, D. On surface stress and surface tension. II. Determination of the surface stress of gold. Surf. Sci. 1968, 12, 134–140. (10.1016/0039-6028(68)90119-2) / Surf. Sci. by C. W. Mays (1968)
  35. Tong, H.; Zhu, Y. J.; Yang, L. X.; Li, L.; Zhang, L. Lead chalcogenide nanotubes synthesized by biomolecule-assisted self-assembly of nanocrystals at room temperature. Angew. Chem. Int. Ed. 2006, 45, 7739–7742. (10.1002/anie.200602952) / Angew. Chem. Int. Ed. by H. Tong (2006)
  36. Klufers, P.; Schulhmacher, J. Sixteenfold deprotonated ?-cyclodextrin tori as anions in a hexadecanuclear lead(II) alkoxide. Angew. Chem. Int. Ed. 1994, 33, 1863–1865. (10.1002/anie.199418631) / Angew. Chem. Int. Ed. by P. Klufers (1994)
Dates
Type When
Created 14 years, 11 months ago (Sept. 6, 2010, 3:01 a.m.)
Deposited 8 months, 2 weeks ago (Dec. 12, 2024, 6:04 p.m.)
Indexed 1 month ago (July 25, 2025, 6:24 a.m.)
Issued 14 years, 11 months ago (Sept. 6, 2010)
Published 14 years, 11 months ago (Sept. 6, 2010)
Published Online 14 years, 11 months ago (Sept. 6, 2010)
Published Print 14 years, 10 months ago (Oct. 1, 2010)
Funders 0

None

@article{Xiao_2010, title={Efficient synthesis of PbTe nanoparticle networks}, volume={3}, ISSN={1998-0000}, url={http://dx.doi.org/10.1007/s12274-010-0030-8}, DOI={10.1007/s12274-010-0030-8}, number={10}, journal={Nano Research}, publisher={Tsinghua University Press}, author={Xiao, Qiangfeng and Weng, Ding and Yang, Zhenglong and Garay, Javier and Zhang, Minjuan and Lu, Yunfeng}, year={2010}, month=sep, pages={685–693} }