Crossref journal-article
Springer Science and Business Media LLC
Cellular and Molecular Bioengineering (297)
Bibliography

Pirentis, A. P., Peruski, E., Iordan, A. L., & Stamenović, D. (2010). A Model for Stress Fiber Realignment Caused by Cytoskeletal Fluidization During Cyclic Stretching. Cellular and Molecular Bioengineering, 4(1), 67–80.

Authors 4
  1. Athanassios P. Pirentis (first)
  2. Elizabeth Peruski (additional)
  3. Andreea L. Iordan (additional)
  4. Dimitrije Stamenović (additional)
References 33 Referenced 18
  1. Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001. (10.1038/35074532) / Nat. Cell Biol. by NQ Balaban (2001)
  2. Bischofs, I. B., and U. S. Schwarz. Cell organization in soft media due to active mechanosensing. Proc. Natl Acad. Sci. USA 100:9274–9279, 2003. (10.1073/pnas.1233544100) / Proc. Natl Acad. Sci. USA by IB Bischofs (2003)
  3. Butler, J. P., I. M. Tolić-Nørrelykke, B. Fabry, and J. J. Fredberg. Traction fields, moments and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282:C595–C605, 2002. (10.1152/ajpcell.00270.2001) / Am. J. Physiol. Cell Physiol. by JP Butler (2002)
  4. Califano, J. P., and C. A. Reinhart-King. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3:68–75, 2010. (10.1007/s12195-010-0102-6) / Cell. Mol. Bioeng. by JP Califano (2010)
  5. Chen, C., R. Krishnan, E. Zhou, A. Ramachandran, D. Tambe, K. Rajendran, R. M. Adam, L. Deng, and J. J. Fredberg. Fluidization and resolidification of the human bladder smooth muscle cell in response to transient stretch. PLoS One 5:e12035, 2010. (10.1371/journal.pone.0012035) / PLoS One by C Chen (2010)
  6. Costa, K. D., W. J. Hucker, and F. C.-P. Yin. Buckling of actin stress fibers: a new wrinkle in the cytoskeletal tapestry. Cell Motil. Cytoskeleton 52:266–274, 2002. (10.1002/cm.10056) / Cell Motil. Cytoskeleton by KD Costa (2002)
  7. De, R., and S. A. Safran. Dynamical theory of active cellular response to external stress. Phys. Rev. E 78:031923, 2008. (10.1103/PhysRevE.78.031923) / Phys. Rev. E by R De (2008)
  8. De, R., A. Zemel, and S. A. Safran. Dynamics of cell orientation. Nat. Phys. 3:655–659, 2007. (10.1038/nphys680) / Nat. Phys. by R De (2007)
  9. Eastwood, M., V. C. Mudera, D. A. McGrouther, and R. A. Brown. Effect of precise mechanical loading on fibroblast populated collagen lattices: morphological changes. Cell Motil. Cytoskeleton 40:13–21, 1998. (10.1002/(SICI)1097-0169(1998)40:1<13::AID-CM2>3.0.CO;2-G) / Cell Motil. Cytoskeleton by M Eastwood (1998)
  10. Fabry, B., G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg. Scaling the microrheology of living cells. Phys. Rev. Lett. 87:148102, 2001. (10.1103/PhysRevLett.87.148102) / Phys. Rev. Lett. by B Fabry (2001)
  11. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer-Verlag, 1993. (10.1007/978-1-4757-2257-4) / Biomechanics: Mechanical Properties of Living Tissues by YC Fung (1993)
  12. Ghibaudo, M., A. Saez, L. Trichet, A. Xayaphoummine, J. Browaeys, P. Silberzan, A. Buguin, and B. Ladoux. Traction forces and rigidity sensing regulate cell functions. Soft Matter 4:1836–1842, 2008. (10.1039/b804103b) / Soft Matter by M Ghibaudo (2008)
  13. Gilmore, R. Catastrophe Theory for Scientists and Engineers. New York: Wiley, 1981. / Catastrophe Theory for Scientists and Engineers by R Gilmore (1981)
  14. Goffin, J. M., P. Pittet, G. Csucs, J. W. Lussi, J.-J. Meister, and B. Hinz. Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actinin to stress fibers. J. Cell Biol. 172:259–268, 2006. (10.1083/jcb.200506179) / J. Cell Biol. by JM Goffin (2006)
  15. Hayakawa, K., A. Hosokawa, K. Yabusaki, and T. Obinata. Orientation of smooth muscle-derived A10 cells in culture by cyclic stretching: relationship between stress fiber rearrangement and cell reorientation. Zool. Sci. 17:617–624, 2000. (10.2108/zsj.17.617) / Zool. Sci. by K Hayakawa (2000)
  16. Hayakawa, K., N. Sato, and T. Obinata. Dynamic reorientation of cultured cells and stress fibers under mechanical stress from periodic stretching. Exp. Cell Res. 268:104–114, 2001. (10.1006/excr.2001.5270) / Exp. Cell Res. by K Hayakawa (2001)
  17. Hildebrandt, J. Comparison of mathematical models for cat lung and viscoelastic balloon derived by Laplace transform methods from pressure–volume data. Bul. Math. Biophys. 31:651–667, 1969. (10.1007/BF02477779) / Bul. Math. Biophys. by J Hildebrandt (1969)
  18. Hsu, H.-J., C.-F. Lee, and R. Kaunas. A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS One 4:e4853, 2009. (10.1371/journal.pone.0004853) / PLoS One by H-J Hsu (2009)
  19. Hsu, H.-J., C.-F. Lee, A. Locke, S. Q. Vanderzyl, and R. Kaunas. Stretch-induced stress fiber remodeling and the activations of JNK and ERK depend on mechanical strain rate, but not on FAK. PLoS One 5:e12470, 2010. (10.1371/journal.pone.0012470) / PLoS One by H-J Hsu (2010)
  20. Kaunas, R., P. Nguyen, S. Usami, and S. Chien. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc. Natl Acad. Sci. USA 102:15895–15900, 2005. (10.1073/pnas.0506041102) / Proc. Natl Acad. Sci. USA by R Kaunas (2005)
  21. Krishnan, R., C. Y. Park, Y.-C. Lin, J. Mead, R. T. Jaspers, X. Trepat, G. Lenormand, D. Tambe, A. V. Smolensky, A. H. Knoll, J. P. Butler, and J. J. Fredberg. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PLoS One 4:e5486, 2009. (10.1371/journal.pone.0005486) / PLoS One by R Krishnan (2009)
  22. Kurpinski, K., J. Chu, C. Hashi, and S. Li. Anisotropic mechanosensing by mesenchymal stem cells. Proc. Natl Acad. Sci. USA 103:16095–16100, 2006. (10.1073/pnas.0604182103) / Proc. Natl Acad. Sci. USA by K Kurpinski (2006)
  23. Lazopoulos, K. A., and A. Pirentis. Substrate stretching and reorganization of stress fibers as a finite elasticity problem. Int. J. Solids Struct. 44:8285–8296, 2007. (10.1016/j.ijsolstr.2007.06.017) / Int. J. Solids Struct. by KA Lazopoulos (2007)
  24. Lu, L., Y. Feng, W. J. Hucker, S. J. Oswald, G. D. Longmore, and F. C.-P. Yin. Actin stress fiber pre-extension in human aortic endothelial cells. Cell Motil. Cytoskeleton 65:281–294, 2008. (10.1002/cm.20260) / Cell Motil. Cytoskeleton by L Lu (2008)
  25. Sato, K., T. Adachi, M. Matsuo, and Y. Tomita. Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber architecture in osteoblastic cells. J. Biomech. 38:1895–1901, 2005. (10.1016/j.jbiomech.2004.08.012) / J. Biomech. by K Sato (2005)
  26. Stamenović, D., K. A. Lazopoulos, A. Pirentis, and B. Suki. Mechanical stability determines stress fiber and focal adhesion orientation. Cell. Mol. Bioeng. 2:475–485, 2009. (10.1007/s12195-009-0093-3) / Cell. Mol. Bioeng. by D Stamenović (2009)
  27. Takemasa, T., K. Sugimoto, and K. Yamashita. Amplitude-dependent stress fiber reorientation in early response to cyclic strain. Exp. Cell Res. 230:407–410, 1997. (10.1006/excr.1996.3428) / Exp. Cell Res. by T Takemasa (1997)
  28. Trepat, X., L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg. Universal physical response to stretch in living cells. Nature 441:592–595, 2007. (10.1038/nature05824) / Nature by X Trepat (2007)
  29. Wang, J. H.-C. Substrate deformation determines actin cytoskeleton reorganization: mathematical modeling and experimental study. J. Theor. Biol. 202:33–41, 2000. (10.1006/jtbi.1999.1035) / J. Theor. Biol. by JH-C Wang (2000)
  30. Wang, J. H.-C., P. Goldschmidt-Clermont, J. Wille, and F. C.-P. Yin. Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J. Biomech. 34:1563–1572, 2001. (10.1016/S0021-9290(01)00150-6) / J. Biomech. by JH-C Wang (2001)
  31. Wang, J. H.-C., P. Goldschmidt-Clermont, and F. C.-P. Yin. Contractility affects stress fiber remodeling and reorientation of endothelial cells subjected to cyclic mechanical stretching. Ann. Biomed. Eng. 28:1165–1171, 2000. (10.1114/1.1317528) / Ann. Biomed. Eng. by JH-C Wang (2000)
  32. Wang, N., I. M. Tolić-Nørrelykke, J. Chen, S. M. Mijailovich, J. P. Butler, J. J. Fredberg, and D. Stamenović. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282:C606–C616, 2002. (10.1152/ajpcell.00269.2001) / Am. J. Physiol. Cell Physiol. by N Wang (2002)
  33. Wille, J. J., C. A. Ambrosi, and F. C.-P. Yin. Comparison of the effects of cyclic stretching and compression on endothelial cell morphological responses. ASME J. Biomech. Eng. 126:545–551, 2004. (10.1115/1.1798053) / ASME J. Biomech. Eng. by JJ Wille (2004)
Dates
Type When
Created 14 years, 8 months ago (Dec. 3, 2010, 9 a.m.)
Deposited 6 years, 2 months ago (June 6, 2019, 11:48 a.m.)
Indexed 1 month, 1 week ago (July 19, 2025, 11:51 p.m.)
Issued 14 years, 8 months ago (Dec. 4, 2010)
Published 14 years, 8 months ago (Dec. 4, 2010)
Published Online 14 years, 8 months ago (Dec. 4, 2010)
Published Print 14 years, 5 months ago (March 1, 2011)
Funders 0

None

@article{Pirentis_2010, title={A Model for Stress Fiber Realignment Caused by Cytoskeletal Fluidization During Cyclic Stretching}, volume={4}, ISSN={1865-5033}, url={http://dx.doi.org/10.1007/s12195-010-0152-9}, DOI={10.1007/s12195-010-0152-9}, number={1}, journal={Cellular and Molecular Bioengineering}, publisher={Springer Science and Business Media LLC}, author={Pirentis, Athanassios P. and Peruski, Elizabeth and Iordan, Andreea L. and Stamenović, Dimitrije}, year={2010}, month=dec, pages={67–80} }