Crossref journal-article
Springer Science and Business Media LLC
Cellular and Molecular Bioengineering (297)
Bibliography

Sen, S., Engler, A. J., & Discher, D. E. (2009). Matrix Strains Induced by Cells: Computing How Far Cells Can Feel. Cellular and Molecular Bioengineering, 2(1), 39–48.

Authors 3
  1. Shamik Sen (first)
  2. Adam J. Engler (additional)
  3. Dennis E. Discher (additional)
References 42 Referenced 172
  1. Balaban NQ, Schwarz US, Riveline D, et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol. 2001;3(5):466–472. (10.1038/35074532) / Nat. Cell Biol. by N. Q. Balaban (2001)
  2. Beningo KA, Dembo M, Kaverina I, Small JV, Wang Y-l. Nascent Focal Adhesions Are Responsible for the Generation of Strong Propulsive Forces in Migrating Fibroblasts. J. Cell Biol. 2001;153(4):881–888. (10.1083/jcb.153.4.881) / J. Cell Biol. by K. A. Beningo (2001)
  3. Bischofs IB, Safran SA, Schwarz US. Elastic interactions of active cells with soft materials. PRE. 2004;69(2). (10.1103/PhysRevE.69.021911) / Phys. Rev. E by I. B. Bischofs (2003)
  4. Bischofs IB, Schwarz US. Cell organization in soft media due to active mechanosensing. PNAS. 2003;100(16):9274–9279. (10.1073/pnas.1233544100) / PNAS by I. B. Bischofs (2003)
  5. Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ. Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol. 2002;282(3):C595–605. (10.1152/ajpcell.00270.2001) / Am. J. Physiol. Cell Physiol. by J. P. Butler (2002)
  6. Cai Y, Biais N, Giannone G, et al. Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow. Biophys. J. 2006;91(10):3907–20. (10.1529/biophysj.106.084806) / Biophys. J. by Y. Cai (2006)
  7. Charras GT, Horton MA. Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys. J. 2002;83(2):858–79. (10.1016/S0006-3495(02)75214-4) / Biophys. J. by G. T. Charras (2002)
  8. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking Cell-Matrix Adhesions to the Third Dimension. Science. 2001;294(5547):1708–1712. (10.1126/science.1064829) / Science by E. Cukierman (2001)
  9. Dembo M, Wang Y-L. Stresses at the Cell-to-Substrate Interface during Locomotion of Fibroblasts. Biophys. J. 1999;76(4):2307–2316. (10.1016/S0006-3495(99)77386-8) / Biophys. J. by M. Dembo (1999)
  10. DiMilla PA, Barbee K, Lauffenburger DA. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 1991;60(1):15–37. (10.1016/S0006-3495(91)82027-6) / Biophys. J. by P. A. DiMilla (1991)
  11. Engler AJ, Bacakova L, Newman C, Hategan A, Griffin M, Discher DE. Substrate Compliance versus Ligand Density in Cell on Gel Responses. Biophys. J. 2004;86(1):617–628. (10.1016/S0006-3495(04)74140-5) / Biophys. J. by A. J. Engler (2004)
  12. Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 2004;166(6):877–887. (10.1083/jcb.200405004) / J. Cell Biol. by A. J. Engler (2004)
  13. Engler AJ, Richert R, Wong JY, Picart C, Discher DE. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: Correlations between substrate stiffness and cell adhesion. J. Surface Science. 2004;570:142–154. (10.1016/j.susc.2004.06.179) / J. Surf. Sci. by A. J. Engler (2004)
  14. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. (10.1016/j.cell.2006.06.044) / Cell by A. J. Engler (2006)
  15. Flanagan LA JY, Marg B, Osterfield M, Janmey PA. Neurite branching on deformable substrates. Neuroreport. 2002;13(18):2411–5. (10.1097/00001756-200212200-00007) / NeuroReport by L. A. Flanagan (2002)
  16. A.J. García Reyes CD. Bio-adhesive Surfaces to Promote Osteoblast Differentiation and Bone Formation Journal of Dental Research. 2005;84(5):407–413. (10.1177/154405910508400502) / J. Dent. Res. by A. J. García (2005)
  17. Griffin MA, Sen S, Sweeney HL, Discher DE. Adhesion-contractile balance in myocyte differentiation. J. Cell Sci. 2004;117(24):5855–5863. (10.1242/jcs.01496) / J. Cell Sci. by M. A. Griffin (2004)
  18. Guilak F MV. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J Biomechanics. 2000;33(12):1663–73. (10.1016/S0021-9290(00)00105-6) / J. Biomech. by F. Guilak (2000)
  19. Guilak F, Erickson GR, Ting-Beall HP. The Effects of Osmotic Stress on the Viscoelastic and Physical Properties of Articular Chondrocytes. Biophys. J. 2002;82(2):720–727. (10.1016/S0006-3495(02)75434-9) / Biophys. J. by F. Guilak (2002)
  20. Harris AK Stopak D, Wild P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature. 1981;290(5803):249–51. (10.1038/290249a0) / Nature by A. K. Harris (1981)
  21. Harris AK WP, Stopak D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science. 1980;208(4440):177–9. (10.1126/science.6987736) / Science by A. K. Harris (1980)
  22. Karcher H, Lammerding J, Huang H, Lee RT, Kamm RD, Kaazempur-Mofrad MR. A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys. J. 2003;85(5):3336–49. (10.1016/S0006-3495(03)74753-5) / Biophys. J. by H. Karcher (2003)
  23. Khatiwala CB, Peyton SR, Putnam AJ. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell Physiol. 2006;290(6):C1640–50. (10.1152/ajpcell.00455.2005) / Am. J. Physiol. Cell Physiol. by C. B. Khatiwala (2006)
  24. Kumar S, Maxwell IZ, Heisterkamp A, et al. Viscoelastic Retraction of Single Living Stress Fibers and Its Impact on Cell Shape, Cytoskeletal Organization, and Extracellular Matrix Mechanics. Biophys. J. 2006;90(10):3762–3773. (10.1529/biophysj.105.071506) / Biophys. J. by S. Kumar (2006)
  25. Maloney J, Walton EB, Bruce CM, Van Vliet KJ. Influence of finite thickness and stiffness on cellular adhesion-induced deformation of compliant substrata. Phys. Rev. E 2008;78(041923):1–15. / Phys. Rev. E by J. Maloney (2008)
  26. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95. (10.1016/S1534-5807(04)00075-9) / Dev. Cell by R. McBeath (2004)
  27. McGarry JG, Prendergast PJ. A three-dimensional finite element model of an adherent eukaryotic cell. European Cells and Materials. 2004;7:27–34. (10.22203/eCM.v007a03) / Eur. Cell Mater. by J. G. McGarry (2004)
  28. Merkel R, Kirchgessner N, Cesa CM, Hoffmann B. Cell Force Microscopy on Elastic Layers of Finite Thickness. Biophys. J. 2007;93(9):3314–3323. (10.1529/biophysj.107.111328) / Biophys. J. by R. Merkel (2007)
  29. Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54. (10.1016/j.ccr.2005.08.010) / Cancer Cell by M. J. Paszek (2005)
  30. Pelham RJ, Jr., Wang Y-l. Cell locomotion and focal adhesions are regulated by substrate flexibility. PNAS. 1997;94(25):13661–13665. (10.1073/pnas.94.25.13661) / PNAS by R. J. Pelham Jr. (1997)
  31. Peyton SR, Putnam AJ. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell Physiol. 2005;204(1):198–209. (10.1002/jcp.20274) / J. Cell. Physiol. by S. R. Peyton (2005)
  32. Rajagopalan P, Marganski WA, Brown XQ, Wong JY. Direct comparison of the spread area, contractility, and migration of balb/c 3T3 fibroblasts adhered to fibronectin- and RGD-modified substrata. Biophys. J. 2004;87(4):2818–27. (10.1529/biophysj.103.037218) / Biophys. J. by P. Rajagopalan (2004)
  33. Raucher D, Sheetz MP. Characteristics of a Membrane Reservoir Buffering Membrane Tension. Biophys. J. 1999;77(4):1992–2002. (10.1016/S0006-3495(99)77040-2) / Biophys. J. by D. Raucher (1999)
  34. Schwarz US, Balaban NQ, Riveline D, Bershadsky A, Geiger B, Safran SA. Calculation of Forces at Focal Adhesions from Elastic Substrate Data: The Effect of Localized Force and the Need for Regularization. Biophys. J. 2002;83(3):1380–1394. (10.1016/S0006-3495(02)73909-X) / Biophys. J. by U. S. Schwarz (2002)
  35. Schwarz US, Safran SA. Elastic Interactions of Cells. PRL. 2002;88(4), 048102. (10.1103/PhysRevLett.88.048102) / Phys. Rev. Lett. by U. S. Schwarz (2002)
  36. Stedman HH, Sweeney HL, Shrager JB, et al. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature. 1991;352(6335):536–9. (10.1038/352536a0) / Nature by H. H. Stedman (1991)
  37. Stenmark KR, Mecham RP. Cellular and molecular mechanisms of pulmonary vascular remodeling. Ann. Rev. Physiol. 1997;59(1):89–144. (10.1146/annurev.physiol.59.1.89) / Ann. Rev. Physiol. by K. R. Stenmark (1997)
  38. Wang HB, Dembo M, Wang YL. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 2000;279(5):C1345–50. (10.1152/ajpcell.2000.279.5.C1345) / Am. J. Physiol. Cell Physiol. by H. B. Wang (2000)
  39. Wang N, Tolic-Norrelykke IM, Chen J, et al. Cell prestress I Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol. 2002;282(3):C606–616. (10.1152/ajpcell.00269.2001) / Am. J. Physiol. Cell Physiol. by N. Wang (2002)
  40. Weber KT, Sun Y, Campbell SE, et al. Chronic mineralocorticoid excess and cardiovascular remodeling. Steroids. 1995;60(1):125–32. (10.1016/0039-128X(94)00030-G) / Steroids by K. T. Weber (1995)
  41. Yeung T, Georges PC, Flanagan LA, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton. 2005;60(1):24–34. (10.1002/cm.20041) / Cell Motil. Cytoskeleton by T. Yeung (2005)
  42. Zaman MH, Trapani LM, Sieminski AL, et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. U S A. 2006;103(29):10889–94. (10.1073/pnas.0604460103) / Proc. Natl. Acad. Sci. U.S.A. by M. H. Zaman (2006)
Dates
Type When
Created 16 years, 6 months ago (Feb. 12, 2009, 6:32 a.m.)
Deposited 6 years, 3 months ago (June 1, 2019, 9:14 p.m.)
Indexed 1 month ago (Aug. 6, 2025, 9:28 a.m.)
Issued 16 years, 6 months ago (Feb. 13, 2009)
Published 16 years, 6 months ago (Feb. 13, 2009)
Published Online 16 years, 6 months ago (Feb. 13, 2009)
Published Print 16 years, 6 months ago (March 1, 2009)
Funders 0

None

@article{Sen_2009, title={Matrix Strains Induced by Cells: Computing How Far Cells Can Feel}, volume={2}, ISSN={1865-5033}, url={http://dx.doi.org/10.1007/s12195-009-0052-z}, DOI={10.1007/s12195-009-0052-z}, number={1}, journal={Cellular and Molecular Bioengineering}, publisher={Springer Science and Business Media LLC}, author={Sen, Shamik and Engler, Adam J. and Discher, Dennis E.}, year={2009}, month=feb, pages={39–48} }