Crossref
journal-article
Springer Science and Business Media LLC
Applied Biochemistry and Biotechnology (297)
References
39
Referenced
93
-
Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S., & Kim, H. J. (2004). Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters, 25, 541–545. doi: 10.1023/A:1022891231369 .
(
10.1023/A:1022891231369
) / Biotechnology Letters by B. H. Kim (2004) -
Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38, 4040–4046. doi: 10.1021/es0499344 .
(
10.1021/es0499344
) / Environmental Science & Technology by H. Liu (2004) -
Oh, S. E., & Logan, B. E. (2007). Voltage reversal during microbial fuel cell stack operation. Journal of Power Sources, 167, 11–17. doi: 10.1016/j.jpowsour.2007.02.016 .
(
10.1016/j.jpowsour.2007.02.016
) / Journal of Power Sources by S. E. Oh (2007) -
Bond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Electrode reducing microorganisms that harvest energy from marine sediments. Science, 295, 483–485. doi: 10.1126/science.1066771 .
(
10.1126/science.1066771
) / Science by D. R. Bond (2002) -
Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., & Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 70, 5373–5382. doi: 10.1128/AEM.70.9.5373-5382.2004 .
(
10.1128/AEM.70.9.5373-5382.2004
) / Applied and Environmental Microbiology by K. Rabaey (2004) -
Ringeisen, B. R., Ray, R., & Little, B. (2007). A miniature microbial fuel cell operating with an aerobic anode chamber. Journal of Power Sources, 165, 591–597. doi: 10.1016/j.jpowsour.2006.10.026 .
(
10.1016/j.jpowsour.2006.10.026
) / Journal of Power Sources by B. R. Ringeisen (2007) -
Jia, Y. H., Tran, H. T., Kim, D. H., Oh, S. J., Park, D. H., Zhang, R. H., et al. (2008). Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells. Bioprocess and Biosystems Engineering, 31, 315–321. doi: 10.1007/s00449-007-0164-6 .
(
10.1007/s00449-007-0164-6
) / Bioprocess and Biosystems Engineering by Y. H. Jia (2008) -
Moon, H., Chang, I. S., & Kim, B. H. (2006). Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technology, 97, 621–627. doi: 10.1016/j.biortech.2005.03.027 .
(
10.1016/j.biortech.2005.03.027
) / Bioresource Technology by H. Moon (2006) -
Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P., & Herrmann, I. (2005). Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications, 7, 1405–1410. doi: 10.1016/j.elecom.2005.09.032 .
(
10.1016/j.elecom.2005.09.032
) / Electrochemistry Communications by F. Zhao (2005) -
Park, D. H., & Zeikus, J. G. (2003). Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering, 81, 348–355. doi: 10.1002/bit.10501 .
(
10.1002/bit.10501
) / Biotechnology and Bioengineering by D. H. Park (2003) -
Bond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69, 1548–1555. doi: 10.1128/AEM.69.3.1548-1555.2003 .
(
10.1128/AEM.69.3.1548-1555.2003
) / Applied and Environmental Microbiology by D. R. Bond (2003) - Kim, H. J., Hyun, M. S., Chang, I. S., & Kim, B. H. (1999). A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology, 9, 365–367. / Journal of Microbiology and Biotechnology by H. J. Kim (1999)
-
Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21, 1229–1232. doi: 10.1038/nbt867 .
(
10.1038/nbt867
) / Nature Biotechnology by S. K. Chaudhuri (2003) -
Liu, H., Ramnarayanan, R., & Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38, 2281–2285. doi: 10.1021/es034923g .
(
10.1021/es034923g
) / Environmental Science & Technology by H. Liu (2004) -
Liu, H., Ramanathan, R., & Logan, B. E. (2004). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 39, 658–662. doi: 10.1021/es048927c .
(
10.1021/es048927c
) / Environmental Science & Technology by H. Liu (2004) -
Logan, B. E., Cheng, S., Watson, V., & Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology, 41, 3341–3346. doi: 10.1021/es062644y .
(
10.1021/es062644y
) / Environmental Science & Technology by B. E. Logan (2007) -
Aelterman, P., Rabaey, K., Pham, H. T., Boon, N., & Verstraete, W. (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science & Technology, 40, 3388–3394. doi: 10.1021/es0525511 .
(
10.1021/es0525511
) / Environmental Science & Technology by P. Aelterman (2006) -
He, Z., Wagner, N., Minteer, S. D., & Angenent, L. T. (2006). An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environmental Science & Technology, 40, 5212–5217. doi: 10.1021/es060394f .
(
10.1021/es060394f
) / Environmental Science & Technology by Z. He (2006) -
Gabaldón, C., Izquierdo, M., Martínez-Soria, V., Marzal, P., Penya-roja, J. P., & Javier Alvarez-Hornosa, F. (2007). Biological nitrate removal from wastewater of a metal-finishing industry. Journal of Hazardous Materials, 148, 485–490. doi: 10.1016/j.jhazmat.2007.02.071 .
(
10.1016/j.jhazmat.2007.02.071
) / Journal of Hazardous Materials by C. Gabaldón (2007) - Mench, M. M., Wang, C. Y., & Thynell, S. T. (2001). An introduction to fuel cells and related transport phenomena. International Journal of Transport Phenomena, 3, 151–176. / International Journal of Transport Phenomena by M. M. Mench (2001)
-
Oh, S. E., & Logan, B. E. (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology, 70, 162–169. doi: 10.1007/s00253-005-0066-y .
(
10.1007/s00253-005-0066-y
) / Applied Microbiology and Biotechnology by S. E. Oh (2006) -
Liang, P., Huang, X., Fan, M. Z., Cao, X. X., & Wang, C. (2007). Composition and distribution of internal resistance in three types of microbial fuel cells. Applied Microbiology and Biotechnology, 77, 551–558. doi: 10.1007/s00253-007-1193-4 .
(
10.1007/s00253-007-1193-4
) / Applied Microbiology and Biotechnology by P. Liang (2007) -
Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., & Kim, B. H. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 30, 145–152. doi: 10.1016/S0141-0229(01)00478-1 .
(
10.1016/S0141-0229(01)00478-1
) / Enzyme and Microbial Technology by H. J. Kim (2002) -
Lovley, D. R., & Phillips, E. J. P. (1988). Novel mode of microbial energymetabolism: organism carbon oxidation coupled to dissimilatory reduction of iron and manganese. Applied and Environmental Microbiology, 54, 1472–1480.
(
10.1128/AEM.54.6.1472-1480.1988
) / Applied and Environmental Microbiology by D. R. Lovley (1988) -
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., et al. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181–5192. doi: 10.1021/es0605016 .
(
10.1021/es0605016
) / Environmental Science & Technology by B. E. Logan (2006) -
Rabaey, K., Clauwaert, P., Aelterman, P., & Verstraete, W. (2005). Tubular microbial fuel cells for efficient electricity generation. Environmental Science & Technology, 39, 8077–8082. doi: 10.1021/es050986i .
(
10.1021/es050986i
) / Environmental Science & Technology by K. Rabaey (2005) -
Cheng, S., Liu, H., & Logan, B. E. (2006). Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology, 40, 2426–2432. doi: 10.1021/es051652w .
(
10.1021/es051652w
) / Environmental Science & Technology by S. Cheng (2006) -
Cheng, S., Liu, H., & Logan, B. E. (2006). Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications, 8, 489–494. doi: 10.1016/j.elecom.2006.01.010 .
(
10.1016/j.elecom.2006.01.010
) / Electrochemistry Communications by S. Cheng (2006) -
Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S., et al. (2004). Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemistry, 39, 1007–1012. doi: 10.1016/S0032-9592(03)00203-6 .
(
10.1016/S0032-9592(03)00203-6
) / Process Biochemistry by J. K. Jang (2004) -
Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 12, 512–519. doi: 10.1016/j.tim.2006.10.003 .
(
10.1016/j.tim.2006.10.003
) / Trends in Microbiology by B. E. Logan (2006) - Logan, B. E., & Regan, J. M. (2006). Microbial challenges and fuel cells applications. Environmental Science & Technology, 40, 5173–5182. doi: 10.1021/es0605016 . / Environmental Science & Technology by B. E. Logan (2006)
- Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Microbiology, 23, 291–298. / Trends in Microbiology by K. Rabaey (2005)
-
Oh, S. E., Min, B., & Logan, B. E. (2004). Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science & Technology, 38, 4900–4904. doi: 10.1021/es049422p .
(
10.1021/es049422p
) / Environmental Science & Technology by S. E. Oh (2004) -
Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9, 2619–2629. doi: 10.1039/b703627m .
(
10.1039/B703627M
) / Physical Chemistry Chemical Physics by U. Schröder (2007) -
He, Z., Minteer, S. D., & Angenent, L. T. (2005). Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science & Technology, 39, 5262–5267. doi: 10.1021/es0502876 .
(
10.1021/es0502876
) / Environmental Science & Technology by Z. He (2005) -
Aelterman, P., Freguia, S., Keller, J., Verstraete, W., & Rabaey, K. (2008). The anode potential regulates bacterial activity in microbial fuel cells. Applied Microbiology and Biotechnology, 78, 409–418. doi: 10.1007/s00253-007-1327-8 .
(
10.1007/s00253-007-1327-8
) / Applied Microbiology and Biotechnology by P. Aelterman (2008) -
Kubo, I., Fujita, T., Kubo, A., & Fujita, K. (2003). Modes of antifungal action of alkanols against saccharomyces cerevisiae. Bioorganic & Medicinal Chemistry, 11, 1117–1122. doi: 10.1016/S0968-0896(02)00453-4 .
(
10.1016/S0968-0896(02)00453-4
) / Bioorganic & Medicinal Chemistry by I. Kubo (2003) -
Chiao, M., Lam, K. B., & Lin, L. (2006). Micromachined microbial and photosynthetic fuel cells. Journal of Micromechanics and Microengineering, 16, 2547–2553. doi: 10.1088/0960-1317/16/12/005 .
(
10.1088/0960-1317/16/12/005
) / Journal of Micromechanics and Microengineering by M. Chiao (2006) -
Kim, B. H., Chang, I. S., & Gadd, G. M. (2007). Challenges in microbial fuel cell development and operation. Applied Microbiology and Biotechnology, 76, 485–494. doi: 10.1007/s00253-007-1027-4 .
(
10.1007/s00253-007-1027-4
) / Applied Microbiology and Biotechnology by B. H. Kim (2007)
Dates
Type | When |
---|---|
Created | 16 years, 7 months ago (Jan. 26, 2009, 8:49 a.m.) |
Deposited | 5 years, 3 months ago (May 14, 2020, 10:05 p.m.) |
Indexed | 2 days, 7 hours ago (Aug. 31, 2025, 6:14 a.m.) |
Issued | 16 years, 7 months ago (Jan. 27, 2009) |
Published | 16 years, 7 months ago (Jan. 27, 2009) |
Published Online | 16 years, 7 months ago (Jan. 27, 2009) |
Published Print | 15 years, 8 months ago (Jan. 1, 2010) |
@article{Li_2009, title={Microbial Fuel Cells: The Effects of Configurations, Electrolyte Solutions, and Electrode Materials on Power Generation}, volume={160}, ISSN={1559-0291}, url={http://dx.doi.org/10.1007/s12010-008-8516-5}, DOI={10.1007/s12010-008-8516-5}, number={1}, journal={Applied Biochemistry and Biotechnology}, publisher={Springer Science and Business Media LLC}, author={Li, Fengxiang and Sharma, Yogesh and Lei, Yu and Li, Baikun and Zhou, Qixing}, year={2009}, month=jan, pages={168–181} }