Crossref journal-article
Springer Science and Business Media LLC
Applied Biochemistry and Biotechnology (297)
Bibliography

Li, F., Sharma, Y., Lei, Y., Li, B., & Zhou, Q. (2009). Microbial Fuel Cells: The Effects of Configurations, Electrolyte Solutions, and Electrode Materials on Power Generation. Applied Biochemistry and Biotechnology, 160(1), 168–181.

Authors 5
  1. Fengxiang Li (first)
  2. Yogesh Sharma (additional)
  3. Yu Lei (additional)
  4. Baikun Li (additional)
  5. Qixing Zhou (additional)
References 39 Referenced 93
  1. Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S., & Kim, H. J. (2004). Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters, 25, 541–545. doi: 10.1023/A:1022891231369 . (10.1023/A:1022891231369) / Biotechnology Letters by B. H. Kim (2004)
  2. Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38, 4040–4046. doi: 10.1021/es0499344 . (10.1021/es0499344) / Environmental Science & Technology by H. Liu (2004)
  3. Oh, S. E., & Logan, B. E. (2007). Voltage reversal during microbial fuel cell stack operation. Journal of Power Sources, 167, 11–17. doi: 10.1016/j.jpowsour.2007.02.016 . (10.1016/j.jpowsour.2007.02.016) / Journal of Power Sources by S. E. Oh (2007)
  4. Bond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Electrode reducing microorganisms that harvest energy from marine sediments. Science, 295, 483–485. doi: 10.1126/science.1066771 . (10.1126/science.1066771) / Science by D. R. Bond (2002)
  5. Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., & Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 70, 5373–5382. doi: 10.1128/AEM.70.9.5373-5382.2004 . (10.1128/AEM.70.9.5373-5382.2004) / Applied and Environmental Microbiology by K. Rabaey (2004)
  6. Ringeisen, B. R., Ray, R., & Little, B. (2007). A miniature microbial fuel cell operating with an aerobic anode chamber. Journal of Power Sources, 165, 591–597. doi: 10.1016/j.jpowsour.2006.10.026 . (10.1016/j.jpowsour.2006.10.026) / Journal of Power Sources by B. R. Ringeisen (2007)
  7. Jia, Y. H., Tran, H. T., Kim, D. H., Oh, S. J., Park, D. H., Zhang, R. H., et al. (2008). Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells. Bioprocess and Biosystems Engineering, 31, 315–321. doi: 10.1007/s00449-007-0164-6 . (10.1007/s00449-007-0164-6) / Bioprocess and Biosystems Engineering by Y. H. Jia (2008)
  8. Moon, H., Chang, I. S., & Kim, B. H. (2006). Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technology, 97, 621–627. doi: 10.1016/j.biortech.2005.03.027 . (10.1016/j.biortech.2005.03.027) / Bioresource Technology by H. Moon (2006)
  9. Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P., & Herrmann, I. (2005). Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications, 7, 1405–1410. doi: 10.1016/j.elecom.2005.09.032 . (10.1016/j.elecom.2005.09.032) / Electrochemistry Communications by F. Zhao (2005)
  10. Park, D. H., & Zeikus, J. G. (2003). Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering, 81, 348–355. doi: 10.1002/bit.10501 . (10.1002/bit.10501) / Biotechnology and Bioengineering by D. H. Park (2003)
  11. Bond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69, 1548–1555. doi: 10.1128/AEM.69.3.1548-1555.2003 . (10.1128/AEM.69.3.1548-1555.2003) / Applied and Environmental Microbiology by D. R. Bond (2003)
  12. Kim, H. J., Hyun, M. S., Chang, I. S., & Kim, B. H. (1999). A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology, 9, 365–367. / Journal of Microbiology and Biotechnology by H. J. Kim (1999)
  13. Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21, 1229–1232. doi: 10.1038/nbt867 . (10.1038/nbt867) / Nature Biotechnology by S. K. Chaudhuri (2003)
  14. Liu, H., Ramnarayanan, R., & Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38, 2281–2285. doi: 10.1021/es034923g . (10.1021/es034923g) / Environmental Science & Technology by H. Liu (2004)
  15. Liu, H., Ramanathan, R., & Logan, B. E. (2004). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 39, 658–662. doi: 10.1021/es048927c . (10.1021/es048927c) / Environmental Science & Technology by H. Liu (2004)
  16. Logan, B. E., Cheng, S., Watson, V., & Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology, 41, 3341–3346. doi: 10.1021/es062644y . (10.1021/es062644y) / Environmental Science & Technology by B. E. Logan (2007)
  17. Aelterman, P., Rabaey, K., Pham, H. T., Boon, N., & Verstraete, W. (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science & Technology, 40, 3388–3394. doi: 10.1021/es0525511 . (10.1021/es0525511) / Environmental Science & Technology by P. Aelterman (2006)
  18. He, Z., Wagner, N., Minteer, S. D., & Angenent, L. T. (2006). An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environmental Science & Technology, 40, 5212–5217. doi: 10.1021/es060394f . (10.1021/es060394f) / Environmental Science & Technology by Z. He (2006)
  19. Gabaldón, C., Izquierdo, M., Martínez-Soria, V., Marzal, P., Penya-roja, J. P., & Javier Alvarez-Hornosa, F. (2007). Biological nitrate removal from wastewater of a metal-finishing industry. Journal of Hazardous Materials, 148, 485–490. doi: 10.1016/j.jhazmat.2007.02.071 . (10.1016/j.jhazmat.2007.02.071) / Journal of Hazardous Materials by C. Gabaldón (2007)
  20. Mench, M. M., Wang, C. Y., & Thynell, S. T. (2001). An introduction to fuel cells and related transport phenomena. International Journal of Transport Phenomena, 3, 151–176. / International Journal of Transport Phenomena by M. M. Mench (2001)
  21. Oh, S. E., & Logan, B. E. (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology, 70, 162–169. doi: 10.1007/s00253-005-0066-y . (10.1007/s00253-005-0066-y) / Applied Microbiology and Biotechnology by S. E. Oh (2006)
  22. Liang, P., Huang, X., Fan, M. Z., Cao, X. X., & Wang, C. (2007). Composition and distribution of internal resistance in three types of microbial fuel cells. Applied Microbiology and Biotechnology, 77, 551–558. doi: 10.1007/s00253-007-1193-4 . (10.1007/s00253-007-1193-4) / Applied Microbiology and Biotechnology by P. Liang (2007)
  23. Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., & Kim, B. H. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 30, 145–152. doi: 10.1016/S0141-0229(01)00478-1 . (10.1016/S0141-0229(01)00478-1) / Enzyme and Microbial Technology by H. J. Kim (2002)
  24. Lovley, D. R., & Phillips, E. J. P. (1988). Novel mode of microbial energymetabolism: organism carbon oxidation coupled to dissimilatory reduction of iron and manganese. Applied and Environmental Microbiology, 54, 1472–1480. (10.1128/AEM.54.6.1472-1480.1988) / Applied and Environmental Microbiology by D. R. Lovley (1988)
  25. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., et al. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181–5192. doi: 10.1021/es0605016 . (10.1021/es0605016) / Environmental Science & Technology by B. E. Logan (2006)
  26. Rabaey, K., Clauwaert, P., Aelterman, P., & Verstraete, W. (2005). Tubular microbial fuel cells for efficient electricity generation. Environmental Science & Technology, 39, 8077–8082. doi: 10.1021/es050986i . (10.1021/es050986i) / Environmental Science & Technology by K. Rabaey (2005)
  27. Cheng, S., Liu, H., & Logan, B. E. (2006). Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology, 40, 2426–2432. doi: 10.1021/es051652w . (10.1021/es051652w) / Environmental Science & Technology by S. Cheng (2006)
  28. Cheng, S., Liu, H., & Logan, B. E. (2006). Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications, 8, 489–494. doi: 10.1016/j.elecom.2006.01.010 . (10.1016/j.elecom.2006.01.010) / Electrochemistry Communications by S. Cheng (2006)
  29. Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S., et al. (2004). Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemistry, 39, 1007–1012. doi: 10.1016/S0032-9592(03)00203-6 . (10.1016/S0032-9592(03)00203-6) / Process Biochemistry by J. K. Jang (2004)
  30. Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 12, 512–519. doi: 10.1016/j.tim.2006.10.003 . (10.1016/j.tim.2006.10.003) / Trends in Microbiology by B. E. Logan (2006)
  31. Logan, B. E., & Regan, J. M. (2006). Microbial challenges and fuel cells applications. Environmental Science & Technology, 40, 5173–5182. doi: 10.1021/es0605016 . / Environmental Science & Technology by B. E. Logan (2006)
  32. Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Microbiology, 23, 291–298. / Trends in Microbiology by K. Rabaey (2005)
  33. Oh, S. E., Min, B., & Logan, B. E. (2004). Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science & Technology, 38, 4900–4904. doi: 10.1021/es049422p . (10.1021/es049422p) / Environmental Science & Technology by S. E. Oh (2004)
  34. Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9, 2619–2629. doi: 10.1039/b703627m . (10.1039/B703627M) / Physical Chemistry Chemical Physics by U. Schröder (2007)
  35. He, Z., Minteer, S. D., & Angenent, L. T. (2005). Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science & Technology, 39, 5262–5267. doi: 10.1021/es0502876 . (10.1021/es0502876) / Environmental Science & Technology by Z. He (2005)
  36. Aelterman, P., Freguia, S., Keller, J., Verstraete, W., & Rabaey, K. (2008). The anode potential regulates bacterial activity in microbial fuel cells. Applied Microbiology and Biotechnology, 78, 409–418. doi: 10.1007/s00253-007-1327-8 . (10.1007/s00253-007-1327-8) / Applied Microbiology and Biotechnology by P. Aelterman (2008)
  37. Kubo, I., Fujita, T., Kubo, A., & Fujita, K. (2003). Modes of antifungal action of alkanols against saccharomyces cerevisiae. Bioorganic & Medicinal Chemistry, 11, 1117–1122. doi: 10.1016/S0968-0896(02)00453-4 . (10.1016/S0968-0896(02)00453-4) / Bioorganic & Medicinal Chemistry by I. Kubo (2003)
  38. Chiao, M., Lam, K. B., & Lin, L. (2006). Micromachined microbial and photosynthetic fuel cells. Journal of Micromechanics and Microengineering, 16, 2547–2553. doi: 10.1088/0960-1317/16/12/005 . (10.1088/0960-1317/16/12/005) / Journal of Micromechanics and Microengineering by M. Chiao (2006)
  39. Kim, B. H., Chang, I. S., & Gadd, G. M. (2007). Challenges in microbial fuel cell development and operation. Applied Microbiology and Biotechnology, 76, 485–494. doi: 10.1007/s00253-007-1027-4 . (10.1007/s00253-007-1027-4) / Applied Microbiology and Biotechnology by B. H. Kim (2007)
Dates
Type When
Created 16 years, 7 months ago (Jan. 26, 2009, 8:49 a.m.)
Deposited 5 years, 3 months ago (May 14, 2020, 10:05 p.m.)
Indexed 2 days, 7 hours ago (Aug. 31, 2025, 6:14 a.m.)
Issued 16 years, 7 months ago (Jan. 27, 2009)
Published 16 years, 7 months ago (Jan. 27, 2009)
Published Online 16 years, 7 months ago (Jan. 27, 2009)
Published Print 15 years, 8 months ago (Jan. 1, 2010)
Funders 0

None

@article{Li_2009, title={Microbial Fuel Cells: The Effects of Configurations, Electrolyte Solutions, and Electrode Materials on Power Generation}, volume={160}, ISSN={1559-0291}, url={http://dx.doi.org/10.1007/s12010-008-8516-5}, DOI={10.1007/s12010-008-8516-5}, number={1}, journal={Applied Biochemistry and Biotechnology}, publisher={Springer Science and Business Media LLC}, author={Li, Fengxiang and Sharma, Yogesh and Lei, Yu and Li, Baikun and Zhou, Qixing}, year={2009}, month=jan, pages={168–181} }