Crossref journal-article
Springer Science and Business Media LLC
JOM (297)
Bibliography

Liu, Z.-K., Chen, L.-Q., & Rajan, K. (2006). Linking length scales via materials informatics. JOM, 58(11), 42–50.

Authors 3
  1. Zi-Kui Liu (first)
  2. Long-Qing Chen (additional)
  3. Krishna Rajan (additional)
References 75 Referenced 29
  1. Z.-K. Liu et al., “An integrated Framework for Multi-Scale Materials Simulation and Design,” J. Comput-Aided Mater. Des., 11 (2004), pp. 183–199. (10.1007/s10820-005-3173-2) / J. Comput-Aided Mater. Des. by Z.-K. Liu (2004)
  2. R. Arroyave, A. van de Walle, and Z.-K. Liu, “First-Principles Calculations of the Zn-Zr System,” Acta Mater., 54 (2006), pp. 473–482. (10.1016/j.actamat.2005.09.018) / Acta Mater. by R. Arroyave (2006)
  3. S. Shang et al., “Phase Stability in a- and b-Rhombohedral Boron,” Phys. Rev. Lett., 2006, submitted.
  4. Y. Wang, Z.-K. Liu, and L.-Q. Chen, “Thermodynamic Properties of Al, Ni, NiAl, and Ni3Al from First-Principles Calculations,” Acta Mater., 52 (2004), pp. 2665–2671. (10.1016/j.actamat.2004.02.014) / Acta Mater. by Y. Wang (2004)
  5. R. Arroyave, D. Shin, and Z.-K. Liu, “Ab initio Thermodynamic Properties of Stoichiometric Phases in the Ni-Al System,” Acta Mater., 53 (2005), pp. 1809–1819. (10.1016/j.actamat.2004.12.030) / Acta Mater. by R. Arroyave (2005)
  6. A. van de Walle, M. Asta, and G. Ceder, “The Alloy Theoretic Automated Toolkit: A User Guide,” CALPHAD, 26 (2002), pp. 539–553. (10.1016/S0364-5916(02)80006-2) / CALPHAD by A. van de Walle (2002)
  7. A.E. Kissavos et al., “A Critical Test of ab initio and CALPHAD Methods: The Structural Energy Difference between bcc and hcp Molybdenum,” CALPHAD, 29 (2005), pp. 17–23. (10.1016/j.calphad.2005.04.002) / CALPHAD by A.E. Kissavos (2005)
  8. C. Wolverton and A. Zunger, “Ising-like Description of Structurally Released Ordered and Disordered Alloys,” Phys. Rev. Lett., 75 (1995), pp. 3162–3165. (10.1103/PhysRevLett.75.3162) / Phys. Rev. Lett. by C. Wolverton (1995)
  9. V. Ozolins, C. Wolverton and A.A. Zunger, “Cu−Au, Ag−Au, Cu−Ag, and Ni−Au Intermetallics: First-Principles Study of Temperature-Composition Phase Diagrams and Structures,” Phys. Rev. B, 57 (1998), pp. 6427–6443. (10.1103/PhysRevB.57.6427) / Phys. Rev. B by V. Ozolins (1998)
  10. A. Zunger et al., “Special Quasirandom Structures,” Phys. Rev. Lett. 65 (1990), pp. 353–356. (10.1103/PhysRevLett.65.353) / Phys. Rev. Lett. by A. Zunger (1990)
  11. D. Shin et al., “Thermodynamic Properties of Binary hcp Solution Phases from Special Quasirandom Structures,” Phys. Rev. B, 74 (2006), p. 024204. (10.1103/PhysRevB.74.024204) / Phys. Rev. B by D. Shin (2006)
  12. C. Jiang et al., “First-Principles Study of Binary bcc Alloys using Special Quasirandom Structures,” Phys. Rev. B, 69 (2004), p. 214202. (10.1103/PhysRevB.69.214202) / Phys. Rev. B by C. Jiang (2004)
  13. C. Jiang, L.-Q. Chen, and Z.-K. Liu, “First-Principles Study of Constitutional Point Defects in B2 NiAl Using Special Quasirandom Structures,” Acta Mater., 53 (2005), pp. 2643–2652. (10.1016/j.actamat.2005.02.026) / Acta Mater. by C. Jiang (2005)
  14. Y. Zhong et al., “First-Principles Investigation of Laves Phases in Mg-Al-Ca System,” Mater. Sci. Forum, 488–489 (2005), pp. 169–175. (10.4028/www.scientific.net/MSF.488-489.169) / Mater. Sci. Forum by Y. Zhong (2005)
  15. M. Yang and Z.-K. Liu, “SQS for Halite,” unpublished research (2005).
  16. D. Shin, R. Arroyave, and Z.-K. Liu, “Thermodynamic Properties of Binary HCP Solution Phases from Special Quasirandom Structures,” Phys. Rev. B (submitted 2005). (10.1103/PhysRevB.74.024204)
  17. T. Wang, L.-Q. Chen, and Z.-K. Liu, “SQS for L12,” unpublished research (2005).
  18. M. Sluiter and Y. Kawazoe, “Prediction of Matrix-Precipitate Interfacial Free Energies: Application to Al-Al3Li,” Phys. Rev. B, 54 (1996), pp. 10381–10384. (10.1103/PhysRevB.54.10381) / Phys. Rev. B by M. Sluiter (1996)
  19. V. Vaithyanathan, C. Wolverton, and L.-Q. Chen, “Multiscale Modeling of Precipitate Microstructure Evolution,” Phys. Rev. Lett., 88 (2002) p. 125503. (10.1103/PhysRevLett.88.125503) / Phys. Rev. Lett. by V. Vaithyanathan (2002)
  20. C. Colinet, “Ab initio Determination of the (001) Antiphase-Boundary Energy in the Do22 Ni3V Compound,” Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 82 (2002), pp. 1715–1729. / Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. by C. Colinet (2002)
  21. N. Sandberg, B. Magyari-Kope, and T.R. Mattsson, “Self-Diffusion Rates in Al from Combined First-Principles and Model-Potential Calculations,” Phys. Rev. Lett., 89 (2002), p. 065901–1. (10.1103/PhysRevLett.89.065901) / Phys. Rev. Lett. by N. Sandberg (2002)
  22. A. Van Der Ven and G. Ceder, “First Principles Calculation of the Interdiffusion Coefficient in Binary Alloys,” Phys. Rev. Lett., 94 (2005), p. 045901. (10.1103/PhysRevLett.94.045901) / Phys. Rev. Lett. by A. Van Der Ven (2005)
  23. Y. Le Page and P. Saxe, “Symmetry-General Least-Squares Extraction of Elastic Data for Strained Materials from ab initio Calculations of Stress,” Phys. Rev. B, 65 (2002), p. 104104. (10.1103/PhysRevB.65.104104) / Phys. Rev. B by Y. Le Page (2002)
  24. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagram, (New York: Academic Press Inc., 1970). / Computer Calculation of Phase Diagram by L. Kaufman (1970)
  25. U.R. Kattner et al., “Applications of Computational Thermodynamics: Groups 4 and 5: Use of Thermodynamic Software in Process Modelling and New Applications of Thermodynamic Calculations,” CALPHAD, 24 (2000), pp. 55–94. (10.1016/S0364-5916(00)00015-8) / CALPHAD by U.R. Kattner (2000)
  26. L. Kaufman, “Computational Thermodynamics and Materials Design,” CALPHAD, 25 (2001), pp. 141–161. (10.1016/S0364-5916(01)00039-6) / CALPHAD by L. Kaufman (2001)
  27. I. Ansara and B. Sundman, “The Scientific Group Thermodata Europe,” Computer Handling and Dissemination of Data, ed. P.S. Glaeser (New York: Elsevier Science Pub. Co., 1987), pp. 154–158. / Computer Handling and Dissemination of Data by I. Ansara (1987)
  28. A.T. Dinsdale, “SGTE Data for Pure Elements,” CALPHAD 15 (1991), pp. 317–425. (10.1016/0364-5916(91)90030-N) / CALPHAD by A.T. Dinsdale (1991)
  29. N. Saunders and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Oxford and New York: Pergamon, 1998). / CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide by N. Saunders (1998)
  30. I. Ansara et al., “Thermodynamic Assessment of the Al−Ni System,” J. Alloy. Compd., 247 (1997), pp. 20–30. (10.1016/S0925-8388(96)02652-7) / J. Alloy. Compd. by I. Ansara (1997)
  31. J.O. Andersson and J. Agren, “Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases,” J. Appl. Phys., 72 (1992), pp. 1350–1355. (10.1063/1.351745) / J. Appl. Phys. by J.O. Andersson (1992)
  32. T. Helander and J. Ågren, “A Phenomenological Treatment of Diffusion in Al−Fe and Al−Ni Alloys having B2-BCC Ordered Structure,” Acta Mater., 47 (1999), pp. 1141–1152. (10.1016/S1359-6454(99)00010-5) / Acta Mater. by T. Helander (1999)
  33. X.G. Lu, M. Selleby, and B. Sundman, “Theoretical Modeling of Molar Volume and Thermal Expansion,” Acta Mater., 53 (2005), pp. 2259–2272. (10.1016/j.actamat.2005.01.049) / Acta Mater. by X.G. Lu (2005)
  34. T. Wang et al., “Modeling of Lattice Parameter in the Ni−Al System,” Metall. Mater. Trans. A, 35A (2004) pp. 2313–2321. (10.1007/s11661-006-0211-y) / Metall. Mater. Trans. A by T. Wang (2004)
  35. L-Q. Chen, “Phase-Field Models for Microstructure Evolution”, Ann. Rev. Mater. Res. 32 (2002), pp. 113–140. (10.1146/annurev.matsci.32.112001.132041) / Ann. Rev. Mater. Res. by L-Q. Chen (2002)
  36. J.W. Cahn and J.E. Hilliard, “Free Energy of a Nonuniform System. I. Interfacial Free Energy,” J. Chem. Phys., 28 (1958), pp. 258–267. (10.1063/1.1744102) / J. Chem. Phys. by J.W. Cahn (1958)
  37. J.W. Cahn, “On Spinodal Decomposition,” Acta Metall., 9 (1961), pp. 795–801. (10.1016/0001-6160(61)90182-1) / Acta Metall. by J.W. Cahn (1961)
  38. S.M. Allen and J.W. Cahn, “A Microscopic Theory of Domain Wall Motion and lts Experimental Verification in Fe−Al Alloy Domain Growth Kinetics,” J. de Physique, C7 (1977), pp. C7-C51. / J. de Physique by S.M. Allen (1977)
  39. G. Caginalp and W. Xie, “Phase-Field and Sharp-Interface Alloy Models,” Phys. Rev. E, 48 (1993), pp. 1897–1909. (10.1103/PhysRevE.48.1897) / Phys. Rev. E by G. Caginalp (1993)
  40. A. Karma and W.J. Rappel, “Phase-Field Method for Computationally Efficient Modeling of Solidification with Arbitrary Interface Kinetics,” Phys. Rev. E., 53 (1996), pp. R3107-R3020. (10.1103/PhysRevE.53.R3017) / Phys. Rev. E. by A. Karma (1996)
  41. S.G. Kim, W.T. Kim, and T. Suzuki, “Phase-Field Model for Binary Alloys”, Phys. Rev. E, 60 (1999), pp. 7186–7197. (10.1103/PhysRevE.60.7186) / Phys. Rev. E by S.G. Kim (1999)
  42. A. Karma, “Phase-Field Formulation for Quantitative modeling of Alloy Solidification,” Phys. Rev. Lett., 8711 (2001), art no. 115701 (10.1103/PhysRevLett.87.115701) / Phys. Rev. Lett. by A. Karma (2001)
  43. A. Baldan, “Review Progress in Ostwald Ripening Theories and Their Applications to the γ-Precipitates in Nickel-Base Superalloys: Part II. Nickel-Base Superalloys,” J. Mater. Sci., 37 (2002), p. 2379. (10.1023/A:1015408116016) / J. Mater. Sci. by A. Baldan (2002)
  44. T. Wang, L.-Q. Chen, and Z.-K. Liu, “Lattice Parameters and Local Lattice Distortion in fcc-Ni Solutions,” Acta Mater, submitted (2005).
  45. V. Biss and D.L. Sponseller, “Effect of Molybdenum on Gamma Prime Coarsening and on Elevated-Temperature Hardness in Some Experimental Ni-Base Superalloys”, Metall. Trans., 4 (1973), pp. 1953–1960. (10.1007/BF02665423) / Metall. Trans. by V. Biss (1973)
  46. G. Kresse and J. Furthmüller, Vienna ab initio simulation package (VASP) (2003), http://cms.mpi. univie.ac.at/vasp/vasp/vasp.html
  47. J.P. Perdew, and Y. Wang, “Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy,” Phys. Rev. B, 45 (1992), pp. 13244–13249. (10.1103/PhysRevB.45.13244) / Phys. Rev. B by J.P. Perdew (1992)
  48. N. Dupin, I. Ansara, and B. Sundman, “Thermodynamic Re-Assessment of the Ternary System Al-Cr-Ni,” CALPHAD 25 (2001), pp. 279–298. (10.1016/S0364-5916(01)00049-9) / CALPHAD by N. Dupin (2001)
  49. N. Saunders, “The Al-Mo System (Aluminum-Molybdenum),” J. Phase Equilib. 18 (1997), pp. 370–378. (10.1007/s11669-997-0063-1) / J. Phase Equilib. by N. Saunders (1997)
  50. Y. Wang et al., “Structural Stability of Ni-Mo Compounds from First-Principles Calculations,” Scr. Mater., 52 (2005), pp. 17–20. (10.1016/j.scriptamat.2004.09.007) / Scr. Mater. by Y. Wang (2005)
  51. S.H. Zhou et al., “First-Principles Calculations and Thermodynamic Modeling of the Ni-Mo System,” Mater. Sci. Eng. A 397 (2005), pp. 288–296. (10.1016/j.msea.2005.02.037) / Mater. Sci. Eng. A by S.H. Zhou (2005)
  52. S.H. Zhou et al., “Computational Tools for Designing Ni-Base Superalloys,” Superalloy 2004, ed. K.A. Green et al. (Warrendale, PA: TMS, 2004), pp. 969–975. / Superalloy 2004 by S.H. Zhou (2004)
  53. A. Engstrom and J. Agren, “Assessment of Diffusional Mobilities in Face-Centered Cubic Ni-Cr-Al Alloys,” Z. Metallkd., 87 (1996), pp. 92–97. / Z. Metallkd. by A. Engstrom (1996)
  54. T. Wang, “Integrated Computational Tools for Microstructure Simulations: Applications to Ni-Al-Mo Alloys” (Ph.D. Thesis, Pennsylvania State University, 2006).
  55. J.Z. Zhu et al., “Linking Phase-Field Model to CALPHAD: Application to Precipitate Shape Evolution in Ni-Base Alloys”, Scr. Mater., 46 (2002), pp. 401–406. (10.1016/S1359-6462(02)00013-1) / Scr. Mater. by J.Z. Zhu (2002)
  56. J.Z. Zhu et al., “Three-Dimensional Phase-Field Simulations of Coarsening Kinetics of γ Particles in Binary Ni-Al Alloys”, Acta Mater., 52 (2004), pp. 2837–2845. (10.1016/j.actamat.2004.02.032) / Acta Mater. by J.Z. Zhu (2004)
  57. Y.H. Wen, et al., “A Phase-Field Model for Heat Treatment Applications in Ni-Based Alloys,” Acta Mater., 54 (2006), pp. 2087–2099. (10.1016/j.actamat.2006.01.001) / Acta Mater. by Y.H. Wen (2006)
  58. J.P. Simmons, C. Shen, and Y. Wang, “Phase Field Modeling of Simutaneous Nucleation and Growth by Expiicitly Incorporating Nucleation Events,” Scr. Mater., 43 (2000), pp. 935–942. (10.1016/S1359-6462(00)00517-0) / Scr. Mater. by J.P. Simmons (2000)
  59. A.J. Ardell and R. Nicholson, “Coarsening of γ in Ni-Al Alloys,” J. Phys. Chem. Solids, 27 (1966), pp. 1793–1800. (10.1016/0022-3697(66)90110-7) / J. Phys. Chem. Solids by A.J. Ardell (1966)
  60. M. Fahrmann et al., “Influence of Coherency Stress on Microstructural Evolution in Model Ni-Al-Mo Alloys,” Acta Metall. Mater., 43 (1995), pp. 1007–1022. (10.1016/0956-7151(94)00337-H) / Acta Metall. Mater. by M. Fahrmann (1995)
  61. C. Suh and K. Rajan, “Virtual Screening and QSAR Formulations for Crystal Chemistry,” QSAR & Combin atorial Science Journal, 24 (2005), p. 114. (10.1002/qsar.200420057) / QSAR & Combin atorial Science Journal by C. Suh (2005)
  62. K. Rajan and A. Rajagopalan “Informatics Based Optimization of Crystallographic Descriptors for Framework Structures”, Combinatorial and High Throughput Discovery and Optimization of Catalysts and Materials, ed. W. Maier and R.A. Potyrailo (Boca Raton, FL: CRC Press, 2006). / Combinatorial and High Throughput Discovery and Optimization of Catalysts and Materials by K. Rajan (2006)
  63. M. Stukowski et al., “Informatics for Combinatorial Experiments: Accelerating Data Interpretation,” Combinatorial Methods and Informatics in Materials Science, ed. Q. Wang et al (Warrendale, PA, Materials Research Society, 2006), in press. / Combinatorial Methods and Informatics in Materials Science by M. Stukowski (2006)
  64. K. Rajan, C. Suh, and B. Narasimhan “Informatics Methods for Combinatorial Materials Science, Combinatorial Materials Science, ed. S.K. Mallapragada, B. Narasimhan, and M.D. Porter (New York: John Wiley & Sons, in press).
  65. K. Rajan, “Materials Informatics,” Materials Today (October 2005), pp. 38–45. (10.1016/S1369-7021(05)71123-8)
  66. K. Rajan, “An Informatics Approach to Interface Characterization: Establishing a ‘Materials by Design’ Paradigm,” Science and Technology of Interfaces, ed. S. Ankem and C.S. Pande (Warrendale, PA: TMS, 2002), pp. 231–242. (10.1002/9781118788103.ch20) / Science and Technology of Interfaces by K. Rajan (2002)
  67. K. Rajan et al., “Quantitative Structure-Activity Relationships (QSARs) for Materials Science,” Combinatorial and Artificial Intelligence Methods in Materials Science, vol. 700, ed. Ichiro Takeuchi et al. (Warrendale, PA: MRS, 2002), pp. S7.5.1-S7.5.10 / Combinatorial and Artificial Intelligence Methods in Materials Science by K. Rajan (2002)
  68. C. Suh et al., “Applications of Principal Component Analysis in Materials Science,” Data Science Journal, 1 (2002), p. 19. (10.2481/dsj.1.19) / Data Science Journal by C. Suh (2002)
  69. K. Rajan, A. Rajagopalan, and C. Suh, “Data Mining and Multivariate Analysis in Materials Science, Molten Salts—Fundamentals to Applications, ed. M. Gaune-Escard (Norwell, MA: Kluwer Academic, 2002), pp. 241–248. (10.1007/978-94-010-0458-9_8) / Molten Salts—Fundamentals to Applications by K. Rajan (2002)
  70. C. Suh et al., “Chemical Discovery in Molten Salts through Data Mining,” International Symposium on lonic Liquids; Festschfift in honor of Prof M. Gaune-Escard, ed. H.A. Øye and A. Jagtøyen (Trondheim, Norway: Norwegian University of Science and Technology, 2003), pp. 587–599. / International Symposium on lonic Liquids; Festschfift in honor of Prof M. Gaune-Escard by C. Suh (2003)
  71. C. Suh and K. Rajan, “Combinatorial Design of Semiconductor Chemistry for Bandgap Engineering: ‘Virtual’ Combinatorial Experimentation”, Applied Surface Science, 223 (2003), pp. 148. (10.1016/S0169-4332(03)00918-8) / Applied Surface Science by C. Suh (2003)
  72. A. Rajagopalan et al., “‘Secondary’ Descriptor Development for Zeolite Framework Design: An Informatics Approach,” Applied Catalysis A, 254 (2003), pp. 147–160. (10.1016/S0926-860X(03)00284-9) / Applied Catalysis A by A. Rajagopalan (2003)
  73. A. Rajagopalan et al., “An informatics Approach to Materials Design,” Proc. 7th Intl. Conference on Systemics, Cybemetics and Informatics (Orlando, FL: Intl. Institute of informatics and Systemics, 2003). / Proc. 7th Intl. Conference on Systemics, Cybemetics and Informatics by A. Rajagopalan (2003)
  74. C. Suh et al., “Combinatorial Materials Design Through Database Science,” Combinatorial and Artificial Intelligence Methods in Materials Scienca II, vol. 804, ed. Radislav A., Potyrailo et al (Warrendale, PA: Materials Research Society, 2004). pp 23.1–23.8. / Combinatorial and Artificial Intelligence Methods in Materials Scienca II by C. Suh (2004)
  75. L. Eriksson et al., Multi- and Megavariate Data Analysis-Principles and Applications (Ume», Sweden: Umetrics Academy, 1999). / Multi- and Megavariate Data Analysis-Principles and Applications by L. Eriksson (1999)
Dates
Type When
Created 18 years, 2 months ago (June 21, 2007, 1:13 a.m.)
Deposited 1 year, 6 months ago (Feb. 15, 2024, 12:24 a.m.)
Indexed 1 year, 3 months ago (May 14, 2024, 11:14 a.m.)
Issued 18 years, 9 months ago (Nov. 1, 2006)
Published 18 years, 9 months ago (Nov. 1, 2006)
Published Print 18 years, 9 months ago (Nov. 1, 2006)
Funders 0

None

@article{Liu_2006, title={Linking length scales via materials informatics}, volume={58}, ISSN={1543-1851}, url={http://dx.doi.org/10.1007/s11837-006-0226-2}, DOI={10.1007/s11837-006-0226-2}, number={11}, journal={JOM}, publisher={Springer Science and Business Media LLC}, author={Liu, Zi-Kui and Chen, Long-Qing and Rajan, Krishna}, year={2006}, month=nov, pages={42–50} }