Crossref
journal-article
Springer Science and Business Media LLC
Bulletin of Mathematical Biology (297)
References
96
Referenced
96
-
Adler, J., 1966. Chemotaxis in bacteria. Science 153, 708–716.
(
10.1126/science.153.3737.708
) / Science by J. Adler (1966) -
Albert, R., Chiu, Y., Othmer, H., 2004. Dynamic receptor team formation can explain the high signal transduction gain in Escherichia coli. Biophys. J. 86, 2650–2659.
(
10.1016/S0006-3495(04)74321-0
) / Biophys. J. by R. Albert (2004) -
Almogy, G., Stone, L., Ben-Tal, N., 2001. Multi-stage regulation, a key to reliable adaptive biochemical pathways. Biophys. J. 81, 3016–3028.
(
10.1016/S0006-3495(01)75942-5
) / Biophys. J. by G. Almogy (2001) -
Alon, U., Surette, M., Barkai, N., Leibler, S., 1999. Robustness in bacterial chemotaxis. Nature 397, 168–171.
(
10.1038/16483
) / Nature by U. Alon (1999) -
Ames, P., Studert, C., Reiser, R., Parkinson, J., 2002. Collaborative signalling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl. Acad. Sci. 99, 7060–7065.
(
10.1073/pnas.092071899
) / Proc. Natl. Acad. Sci. by P. Ames (2002) -
Andrews, S., Bray, D., 2004. Stochastic simulation of chemical reactions with spatial resolution and singled molecule detail. Phys. Biol. 1, 137–151.
(
10.1088/1478-3967/1/3/001
) / Phys. Biol. by S. Andrews (2004) -
Armitage, J., 1999. Bacterial tactic response. Adv. Microb. Physiol. 41, 229–289.
(
10.1016/S0065-2911(08)60168-X
) / Adv. Microb. Physiol. by J. Armitage (1999) -
Arocena, M., Acerenza, L., 2004. Necessary conditions for a minimal model of receptor to show adaptive response over a wide range of levels of stimulus. J. Theor. Biol. 229, 45–57.
(
10.1016/j.jtbi.2004.03.002
) / J. Theor. Biol. by M. Arocena (2004) - Asakura, S., Honda, H., 1984. Two-state model for bacterial chemoreceptor proteins: The role of multiple methylation. J. Math. Biol. 176, 349–367. / J. Math. Biol. by S. Asakura (1984)
-
Barkai, N., Leibler, S., 1997. Robustness in simple biochemical networks. Nature 387, 913–917.
(
10.1038/43199
) / Nature by N. Barkai (1997) -
Berg, H., 2000. Constraints on models for the flagellar rotary motor. Philos. Trans. R. Soc. Lond. B 355, 491–501.
(
10.1098/rstb.2000.0590
) / Philos. Trans. R. Soc. Lond. B by H. Berg (2000) -
Berg, H., 2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54.
(
10.1146/annurev.biochem.72.121801.161737
) / Annu. Rev. Biochem. by H. Berg (2003) -
Berg, H., Purcell, E., 1977. Physics of chemoreception. Biophys. J. 20, 193–219.
(
10.1016/S0006-3495(77)85544-6
) / Biophys. J. by H. Berg (1977) -
Berry, R., Armitage, J., 1999. The bacterial flagellar motor. Adv. Microb. Physiol. 41, 291–337.
(
10.1016/S0065-2911(08)60169-1
) / Adv. Microb. Physiol. by R. Berry (1999) - Beyerinck, M., 1895. Ueber Spirillum desulfuricans als ursache von sulfatreduction. Zentralbl. Bakteriol. Parasitenkd. 1, 1–9, 49–59, 104–14. / Zentralbl. Bakteriol. Parasitenkd. by M. Beyerinck (1895)
-
Bialek, W., Setayeshgar, S., 2005. Physical limits to biochemical signalling. Proc. Natl. Acad. Sci. 102(29), 10040–10045.
(
10.1073/pnas.0504321102
) / Proc. Natl. Acad. Sci. by W. Bialek (2005) -
Block, S., Segall, J., Berg, H., 1982. Impulse response in bacterial chemotaxis. Cell 31, 215–226.
(
10.1016/0092-8674(82)90421-4
) / Cell by S. Block (1982) -
Block, S., Segall, J., Berg, H., 1983. Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 154, 312–323.
(
10.1128/JB.154.1.312-323.1983
) / J. Bacteriol. by S. Block (1983) -
Bornhorst, J., Falke, J., 2001. Evidence that both ligand binding and covalent adaptation drive a two-state model equilibrium in the aspartate receptor signalling complex. J. Gen. Phys. 118, 693–710.
(
10.1085/jgp.118.6.693
) / J. Gen. Phys. by J. Bornhorst (2001) -
Bornhorst, J., Falke, J., 2003. Quantitative analysis of aspartate receptor signalling complex reveals that the homogenous two-state model is inadequate: Development of a heterogenous two-state model. J. Mol. Biol. 326, 1597–1614.
(
10.1016/S0022-2836(03)00026-3
) / J. Mol. Biol. by J. Bornhorst (2003) -
Bray, D., 2002. Bacterial chemotaxis and the question of gain. Proc. Natl. Acad. Sci. 99(1), 7–9.
(
10.1073/pnas.022641699
) / Proc. Natl. Acad. Sci. by D. Bray (2002) -
Bray, D., Bourret, R., 1995. Computer analysis of the binding reactions leading to a transmembrane receptor-linked multiprotein complex involved in bacterial chemotaxis. Mol. Biol. Cell 6, 1367–1380.
(
10.1091/mbc.6.10.1367
) / Mol. Biol. Cell by D. Bray (1995) -
Bray, D., Duke, T., 2004. Conformational spread: The propagation of allosteric states in large multiprotein complexes. Annu. Rev. Biophys. Biomol. Struct. 33(1), 53–73.
(
10.1146/annurev.biophys.33.110502.132703
) / Annu. Rev. Biophys. Biomol. Struct. by D. Bray (2004) -
Bray, D., Bourret, R., Simon, M., 1993. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol. Biol. Cell 4, 469–482.
(
10.1091/mbc.4.5.469
) / Mol. Biol. Cell by D. Bray (1993) -
Bray, D., Levin, M., Morton-Firth, C., 1998. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393(7), 85–88.
(
10.1038/30018
) / Nature by D. Bray (1998) -
Bren, A., Eisenbach, M., 2000. How signals are heard during bacterial chemotaxis: Protein–protein interactions in sensory signal propagation. J. Bacteriol. 182(24), 6865–6873.
(
10.1128/JB.182.24.6865-6873.2000
) / J. Bacteriol. by A. Bren (2000) -
Crissman, H., Darzynkiewicz, Z., Tobey, R., Steinkamp, J., 1985. Correlated measurements of DNA, RNA, and protein in individual cells by flow cytometry. Science 228, 1321–1324.
(
10.1126/science.2408339
) / Science by H. Crissman (1985) -
Darzynkiewicz, Z., Crissman, H., Traganos, F., Steinkamp, J., 1982. Cell heterogeneity during the cell cycle. J. Cell Physiol. 113, 465–474.
(
10.1002/jcp.1041130316
) / J. Cell Physiol. by Z. Darzynkiewicz (1982) - Delbrück, M., Reichardt, W., 1956. System analysis for the light growth reactions of Phycomyces. In D. Rudnick (Ed.), Cellular Mechanisms in Differentation and Growth, pp. 3–44. Princeton University Press, Princeton. / Cellular Mechanisms in Differentation and Growth by M. Delbrück (1956)
-
Duke, T., Bray, D., 1999. Heightened sensitivity of a lattice of membrane receptors. Proc. Natl. Acad. Sci. 96, 10104–10108.
(
10.1073/pnas.96.18.10104
) / Proc. Natl. Acad. Sci. by T. Duke (1999) -
Duke, T., Novére, N.L., Bray, D., 2001. Conformational spread in a ring of proteins: A stochastic approach to allostery. J. Mol. Biol. 308, 541–553.
(
10.1006/jmbi.2001.4610
) / J. Mol. Biol. by T. Duke (2001) -
Eisenbach, M., 1990. Control of bacterial chemotaxis. Mol. Microbiol. 20, 903–910.
(
10.1111/j.1365-2958.1996.tb02531.x
) / Mol. Microbiol. by M. Eisenbach (1990) -
Eisenbach, M., Lengeler, J., Varon, M., Gutnick, D., Meili, R., Firtel, R., Segall, J., Omann, G., Tamada, A., Murakami, F., 2004. Chemotaxis. Imperial College Press, London.
(
10.1142/p303
) / Chemotaxis by M. Eisenbach (2004) -
Emonet, T., Macal, C., North, M., Wickersham, C., Cluzel, P., 2005. Agentcell: A digital single-cell assay for bacterial chemotaxis. Bioinformatics 21(11), 2714–2721.
(
10.1093/bioinformatics/bti391
) / Bioinformatics by T. Emonet (2005) -
Endres, R., Wingreen, N., 2006. Precise adaptation in bacterial chemotaxis through “assistance neighbourhoods”. Proc. Natl. Acad. Sci. 103(35), 13040–13044.
(
10.1073/pnas.0603101103
) / Proc. Natl. Acad. Sci. by R. Endres (2006) -
Engelmann, T., 1881a. Neue methode zur untersuchung der sauerstoffaussheidung pflanzlicher und thierischer organismen. Pflugers Arch. Gesamte Physiol. Menschen Tiere 25, 285–292.
(
10.1007/BF01661982
) / Pflugers Arch. Gesamte Physiol. Menschen Tiere by T. Engelmann (1881) -
Engelmann, T., 1881b. Zur biologie der schizomyceten. Pflugers Arch. Gesamte Physiol. 26, 537.
(
10.1007/BF01628169
) / Pflugers Arch. Gesamte Physiol. by T. Engelmann (1881) -
Erban, R., Othmer, H., 2004. From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math. 65, 361–391.
(
10.1137/S0036139903433232
) / SIAM J. Appl. Math. by R. Erban (2004) -
Erban, R., Othmer, H., 2005. From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modelling in biology. Multiscale Model. Simul. 3(2), 362–394.
(
10.1137/040603565
) / Multiscale Model. Simul. by R. Erban (2005) -
Garrity, L., Ordal, G., 1995. Chemotaxis in Bacillus subtilis: How bacteria monitor environmental signals. Pharmacol. Ther. 68(1), 87–104.
(
10.1016/0163-7258(95)00027-5
) / Pharmacol. Ther. by L. Garrity (1995) -
Goldbeter, A., Koshland, D., 1982. Simple molecular model for sensing and adaptation based on receptor modification with application to bacterial chemotaxis. J. Mol. Biol. 161, 395–416.
(
10.1016/0022-2836(82)90246-7
) / J. Mol. Biol. by A. Goldbeter (1982) -
Goldman, J., Andrews, S., Bray, D., 2004. Size and composition of membrane protein clusters prediced by Monte Carlo analysis. Eur. Biophys. J. 33, 506–512.
(
10.1007/s00249-004-0391-6
) / Eur. Biophys. J. by J. Goldman (2004) -
Guo, C., Levine, H., 1999. A thermodynamic model for receptor clustering. Biophys. J. 77(5), 2358–2365.
(
10.1016/S0006-3495(99)77073-6
) / Biophys. J. by C. Guo (1999) -
Guo, C., Levine, H., 2000. A statistical mechanics model for receptor clustering. J. Biol. Phys. 26(3), 219–234.
(
10.1023/A:1010313529687
) / J. Biol. Phys. by C. Guo (2000) -
Hauri, D., Ross, J., 1995. A model of excitation and adaptation in bacterial chemotaxis. Biophys. J. 68, 708–722.
(
10.1016/S0006-3495(95)80232-8
) / Biophys. J. by D. Hauri (1995) -
Kim, S., Wang, W., Kim, K., 2002. Dynamic and clustering model of bacterial chemotaxis receptors: Structural basis for signalling and high sensitivity. Proc. Natl. Acad. Sci. 99(18), 11611–11615.
(
10.1073/pnas.132376499
) / Proc. Natl. Acad. Sci. by S. Kim (2002) -
Koshland, D., 1977. A response regulator model in a simple sensory system. Science 196, 1055–1063.
(
10.1126/science.870969
) / Science by D. Koshland (1977) -
Kreft, J., Booth, G., Wimpenny, J., 1998. Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144, 3275–3287.
(
10.1099/00221287-144-12-3275
) / Microbiology by J. Kreft (1998) -
Kuo, S., Koshland, D., 1989. Multiple kinetic states for the flagellar motor switch. J. Bacteriol. 171(11), 6279–6287.
(
10.1128/jb.171.11.6279-6287.1989
) / J. Bacteriol. by S. Kuo (1989) -
Levin, M., Morton-Firth, C., Abouhamad, W., Bourret, R., Bray, D., 1998. Origins of individual swimming behavior in bacteria. Biophys. J. 74, 175–181.
(
10.1016/S0006-3495(98)77777-X
) / Biophys. J. by M. Levin (1998) -
Levin, M., Shimizu, T., Bray, D., 2002. Binding and diffusion of CheR molecules within a cluster of membrane receptors. Biophys. J. 82, 1809–1817.
(
10.1016/S0006-3495(02)75531-8
) / Biophys. J. by M. Levin (2002) -
Levit, M., Stock, J., 2002. Receptor methylation controls the magnitude of stimulus-response coupling in bacterial chemotaxis. J. Biol. Chem. 277(39), 36760–36765.
(
10.1074/jbc.M204325200
) / J. Biol. Chem. by M. Levit (2002) -
Li, G., Weis, R., 2000. Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100, 357–365.
(
10.1016/S0092-8674(00)80671-6
) / Cell by G. Li (2000) -
Li, M., Hazelbauer, G.L., 2005. Adaptational assistance in clusters of bacterial chemoreceptors. Mol. Microbiol. 56(6), 1617–1626.
(
10.1111/j.1365-2958.2005.04641.x
) / Mol. Microbiol. by M. Li (2005) -
Lipkow, K., 2006. Changing cellular location of CheZ predicted by molecular simulations. PLoS Comput. Biol. 2(4), 301–310.
(
10.1371/journal.pcbi.0020039
) / PLoS Comput. Biol. by K. Lipkow (2006) -
Lipkow, K., Andrews, S., Bray, D., 2005. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. J. Bacteriol. 187(1), 45–53.
(
10.1128/JB.187.1.45-53.2005
) / J. Bacteriol. by K. Lipkow (2005) -
Lybarger, S., Maddock, J., 2001. Polarity in action: Asymmetric protein localization in bacteria. J. Bacteriol. 183(11), 3261–3267.
(
10.1128/JB.183.11.3261-3267.2001
) / J. Bacteriol. by S. Lybarger (2001) -
Macnab, R., Koshland, D., 1972. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. 69(9), 2509–2512.
(
10.1073/pnas.69.9.2509
) / Proc. Natl. Acad. Sci. by R. Macnab (1972) -
Maddock, J., Shapiro, L., 1993. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259(9), 1717–1723.
(
10.1126/science.8456299
) / Science by J. Maddock (1993) -
Mello, B., Tu, Y., 2003a. Perfect and near-perfect adaptation in a model of bacterial chemotaxis. Biophys. J. 84, 2943–2956.
(
10.1016/S0006-3495(03)70021-6
) / Biophys. J. by B. Mello (2003) -
Mello, B., Tu, Y., 2003b. Quantitative modeling of sensitivity in bacterial chemotaxis: The role of coupling among different chemoreceptor species. Proc. Natl. Acad. Sci. 100(14), 8223–8228.
(
10.1073/pnas.1330839100
) / Proc. Natl. Acad. Sci. by B. Mello (2003) -
Mello, B., Tu, Y., 2005. An allosteric model for heterogeneous receptor complexes: Understanding bacterial chemotaxis responses to multiple stimuli. Proc. Natl. Acad. Sci. 102(48), 17354–17359.
(
10.1073/pnas.0506961102
) / Proc. Natl. Acad. Sci. by B. Mello (2005) -
Mello, B., Shaw, L., Tu, Y., 2004. Effects of receptor interaction in bacterial chemotaxis. Biophys. J. 87, 1578–1595.
(
10.1529/biophysj.104.042739
) / Biophys. J. by B. Mello (2004) -
Metzler, R., Klafter, J., 2000. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77.
(
10.1016/S0370-1573(00)00070-3
) / Phys. Rep. by R. Metzler (2000) -
Monod, J., Wyman, J., Changeux, J., 1965. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12, 88–118.
(
10.1016/S0022-2836(65)80285-6
) / J. Mol. Biol. by J. Monod (1965) -
Morton-Firth, C., Bray, D., 1998. Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol. 192, 117–128.
(
10.1006/jtbi.1997.0651
) / J. Theor. Biol. by C. Morton-Firth (1998) -
Morton-Firth, C., Shimizu, T., Bray, D., 1999. A free-energy based stochastic simulation of the Tar receptor complex. J. Mol. Biol. 286, 1059–1074.
(
10.1006/jmbi.1999.2535
) / J. Mol. Biol. by C. Morton-Firth (1999) -
Murray, J., 1993. Mathematical Biology, 2nd edn. Springer, New York.
(
10.1007/978-3-662-08542-4
) / Mathematical Biology by J. Murray (1993) -
Novère, N.L., Shimizu, T., 2001. Stochsim: Modelling of stochastic biomolecular processes. Bioinformatics 17, 575–576.
(
10.1093/bioinformatics/17.6.575
) / Bioinformatics by N.L. Novère (2001) - Pfeffer, W., 1888. Uber chemotaktische bewegungen von bacterien, flagellaten and volvocineen. Unters. Bot. Inst. Tübingen 2, 582. / Unters. Bot. Inst. Tübingen by W. Pfeffer (1888)
-
Rao, C., Frenklach, M., Arkin, A., 2004a. An allosteric model for transmembrane signalling in bacterial chemotaxis. J. Mol. Biol. 343, 291–303.
(
10.1016/j.jmb.2004.08.046
) / J. Mol. Biol. by C. Rao (2004) - Rao, C., Kirby, J., Arkin, A., 2004b. Design and diversity in bacterial chemotaxis: A comparative study in Eschericia coli and Bacillus subtilis. PLoS Biol. 2(2), 239–252. / PLoS Biol. by C. Rao (2004)
-
Segall, J., Block, S., Berg, H., 1986. Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. 83(23), 8987–8991.
(
10.1073/pnas.83.23.8987
) / Proc. Natl. Acad. Sci. by J. Segall (1986) -
Segel, L., 1976. Incorporation of receptor kinetics into a model for bacterial chemotaxis. J. Theor. Biol. 57, 23–42.
(
10.1016/S0022-5193(76)80004-5
) / J. Theor. Biol. by L. Segel (1976) -
Segel, L., 1977. A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32(3), 653–665.
(
10.1137/0132054
) / SIAM J. Appl. Math. by L. Segel (1977) -
Segel, L., Goldbeter, A., 1986. A mechanism for exact sensory adaptation based on receptor modification. J. Theor. Biol. 120, 151–179.
(
10.1016/S0022-5193(86)80171-0
) / J. Theor. Biol. by L. Segel (1986) -
Shi, Y., 2000. Adaptive Ising model and bacterial chemotactic receptor network. Eur. Lett. 50(1), 113–119.
(
10.1209/epl/i2000-00243-1
) / Eur. Lett. by Y. Shi (2000) - Shi, Y., 2001. Effects of thermal fluctuation and the receptor–receptor interaction in bacterial chemotactic signalling and adaptation. Phys. Rev. E 64, 1–8. / Phys. Rev. E by Y. Shi (2001)
-
Shi, Y., 2002. Clustering and signalling of cell receptors. Physica A 311, 199–212.
(
10.1016/S0378-4371(02)00834-8
) / Physica A by Y. Shi (2002) -
Shi, Y., Duke, T., 1998. Cooperative model of bacteria sensing. Phys. Rev. E 58(5), 6399–6406.
(
10.1103/PhysRevE.58.6399
) / Phys. Rev. E by Y. Shi (1998) -
Shimizu, T., Aksenov, S., Bray, D., 2003. A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. J. Mol. Biol. 329, 291–309.
(
10.1016/S0022-2836(03)00437-6
) / J. Mol. Biol. by T. Shimizu (2003) -
Shimizu, T., Novère, N.L., Levin, M., Beavil, A., Sutton, B., Bray, D., 2000. Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat. Cell Biol. 2, 792–796.
(
10.1038/35041030
) / Nat. Cell Biol. by T. Shimizu (2000) -
Skoge, M., Endres, R., Wingreen, N., 2006. Receptor-receptor coupling in bacterial chemotaxis: Evidence for strongly coupled receptors. Biophys. J. 90, 4317–4326.
(
10.1529/biophysj.105.079905
) / Biophys. J. by M. Skoge (2006) -
Sourjik, V., Berg, H., 2002a. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. 99, 12669–12674.
(
10.1073/pnas.192463199
) / Proc. Natl. Acad. Sci. by V. Sourjik (2002) -
Sourjik, V., Berg, H., 2002b. Receptor sensitivity in bacterial chemotaxis. Proc. Natl. Acad. Sci. 99(1), 123–127.
(
10.1073/pnas.011589998
) / Proc. Natl. Acad. Sci. by V. Sourjik (2002) -
Sourjik, V., Berg, H., 2004. Functional interactions between receptors in bacterial chemotaxis. Nature 428, 437–441.
(
10.1038/nature02406
) / Nature by V. Sourjik (2004) - Spiro, P., 1997. Mathematical studies of cell signal transduction. Ph.D. thesis, The University of Utah.
-
Spiro, P., Parkinson, J., Othmer, H., 1997. A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. 94, 7263–7268.
(
10.1073/pnas.94.14.7263
) / Proc. Natl. Acad. Sci. by P. Spiro (1997) -
Spudich, J., Koshland, D., 1976. Non-genetic individuality: Changed in the single cell. Nature 262, 467–471.
(
10.1038/262467a0
) / Nature by J. Spudich (1976) -
Stock, J., Kersulis, G., Koshland, D., 1985. Neither methylating of demethylating enzymes are required for chemotaxis. Cell 42, 683–690.
(
10.1016/0092-8674(85)90125-4
) / Cell by J. Stock (1985) -
Strong, S., Freedman, B., Bialek, W., Koberle, R., 1998. Adaptation and optimal chemotactic strategy for E. coli. Phys. Rev. E 57(4), 4604–4617.
(
10.1103/PhysRevE.57.4604
) / Phys. Rev. E by S. Strong (1998) -
Toda, M., Kubo, R., Saito, N., 1983. Statistical Physics I. Springer, Berlin.
(
10.1007/978-3-642-96698-9
) / Statistical Physics I by M. Toda (1983) -
Wadhams, G., Armitage, J., 2004. Making sense of it all: Bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5(12), 1024–1037.
(
10.1038/nrm1524
) / Nat. Rev. Mol. Cell Biol. by G. Wadhams (2004) -
Wang, H., Matsumura, P., 1997. Phosphorylating and dephosphorylting protein complexes in bacterial chemotaxis. J. Bacteriol. 179, 287–289.
(
10.1128/jb.179.1.287-289.1997
) / J. Bacteriol. by H. Wang (1997) -
Windisch, B., Bray, D., Duke, T., 2006. Balls and chains—a mesoscopic approach. Biophys. J. 91, 2383–2392.
(
10.1529/biophysj.105.078543
) / Biophys. J. by B. Windisch (2006) -
Yi, T., Huang, Y., Simon, M., Doyle, J., 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. 97(9), 4649–4653.
(
10.1073/pnas.97.9.4649
) / Proc. Natl. Acad. Sci. by T. Yi (2000)
Dates
Type | When |
---|---|
Created | 17 years, 1 month ago (July 18, 2008, 4:36 p.m.) |
Deposited | 5 years, 3 months ago (May 6, 2020, 11:52 p.m.) |
Indexed | 3 months, 4 weeks ago (May 1, 2025, 4:27 a.m.) |
Issued | 17 years, 1 month ago (July 19, 2008) |
Published | 17 years, 1 month ago (July 19, 2008) |
Published Online | 17 years, 1 month ago (July 19, 2008) |
Published Print | 17 years ago (Aug. 1, 2008) |
@article{Tindall_2008, title={Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis I: The Single Cell}, volume={70}, ISSN={1522-9602}, url={http://dx.doi.org/10.1007/s11538-008-9321-6}, DOI={10.1007/s11538-008-9321-6}, number={6}, journal={Bulletin of Mathematical Biology}, publisher={Springer Science and Business Media LLC}, author={Tindall, M. J. and Porter, S. L. and Maini, P. K. and Gaglia, G. and Armitage, J. P.}, year={2008}, month=jul, pages={1525–1569} }