10.1007/s11467-015-0459-z
Crossref journal-article
China Engineering Science Press Co. Ltd.
Frontiers of Physics (6066)
Bibliography

Jiang, J.-W. (2015). Graphene versus MoS2: A short review. Frontiers of Physics, 10(3), 287–302.

Authors 1
  1. Jin-Wu Jiang (first)
References 201 Referenced 183
  1. A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007) (10.1038/nmat1849) / Nat. Mater. by A K Geim (2007)
  2. A. H. C. Neto and K. Novoselov, New directions in science and technology: Two-dimensional crystals, Rep. Prog. Phys. 74(8), 082501 (2011) (10.1088/0034-4885/74/8/082501) / Rep. Prog. Phys. by A H C Neto (2011)
  3. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of mono-layer graphene, Science 321(5887), 385 (2008) (10.1126/science.1157996) / Science by C Lee (2008)
  4. R. C. Cooper, C. Lee, C. A. Marianetti, X. Wei, J. Hone, and J. W. Kysar, Nonlinear elastic behavior of two-dimensional molybdenum disulfide, Phys. Rev. B 87(3), 035423 (2013) (10.1103/PhysRevB.87.035423) / Phys. Rev. B by R C Cooper (2013)
  5. Z. C. Ouyang, Z. B. Su, and C. L. Wang, Coil formation in multishell carbon nanotubes: Competition between curvature elasticity and interlayer adhesion, Phys. Rev. Lett. 78(21), 4055 (1997) (10.1103/PhysRevLett.78.4055) / Phys. Rev. Lett. by Z C Ouyang (1997)
  6. Z. C. Tu and Z. C. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number, Phys. Rev. B 65(23), 233407 (2002) (10.1103/PhysRevB.65.233407) / Phys. Rev. B by Z C Tu (2002)
  7. M. Arroyo and T. Belytschko, An atomistic-based nite deformation membrane for single layer crystalline films, J. Mech. Phys. Solids 50(9), 1941 (2002) (10.1016/S0022-5096(02)00002-9) / J. Mech. Phys. Solids by M Arroyo (2002)
  8. Q. Lu, M. Arroyo, and R. Huang, Elastic bending modulus of monolayer graphene, J. Phys. D: Appl. Phys. 42(10), 102002 (2009) (10.1088/0022-3727/42/10/102002) / J. Phys. D: Appl. Phys. by Q Lu (2009)
  9. J. W. Jiang, Z. Qi, H. S. Park, and T. Rabczuk, Elastic bending modulus of single-layer molybdenum disul-phide (MoS2): Finite thickness effect, Nanotechnology 24(43), 435705 (2013) (10.1088/0957-4484/24/43/435705) / Nanotechnology by J W Jiang (2013)
  10. J. W. Jiang and H. S. Park, Negative Poisson’s ratio in single-layer black phosphorus, Nat. Commun. 5, 4727 (2014) (10.1038/ncomms5727) / Nat. Commun. by J W Jiang (2014)
  11. A. C. Ferrari, Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143(1–2), 47 (2007) (10.1016/j.ssc.2007.03.052) / Solid State Commun. by A C Ferrari (2007)
  12. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009) (10.1103/RevModPhys.81.109) / Rev. Mod. Phys. by A H Castro Neto (2009)
  13. A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009) (10.1126/science.1158877) / Science by A K Geim (2009)
  14. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dressel-haus, Raman spectroscopy in graphene, Physics Reports 473, 51 (2009) (10.1016/j.physrep.2009.02.003) / Physics Reports by L M Malard (2009)
  15. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govin-daraj, Graphene: The new two-dimensional nanomaterial, Angew. Chem. Int. Ed. 48(42), 7752 (2009) (10.1002/anie.200901678) / Angew. Chem. Int. Ed. by C N R Rao (2009)
  16. M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110(1), 132 (2010) (10.1021/cr900070d) / Chem. Rev. by M J Allen (2010)
  17. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010) (10.1038/nphoton.2010.186) / Nat. Photonics by F Bonaccorso (2010)
  18. F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010) (10.1038/nnano.2010.89) / Nat. Nanotechnol. by F Schwierz (2010)
  19. A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011) (10.1038/nmat3064) / Nat. Mater. by A A Balandin (2011)
  20. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012) (10.1038/nnano.2012.193) / Nat. Nanotechnol. by Q H Wang (2012)
  21. M. Chhowalla, H. S. Shin, G. Eda, L. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013) (10.1038/nchem.1589) / Nat. Chem. by M Chhowalla (2013)
  22. M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like twodimensional materials, Chem. Rev. 113(5), 3766 (2013) (10.1021/cr300263a) / Chem. Rev. by M Xu (2013)
  23. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013) (10.1021/nn400280c) / ACS Nano by S Z Butler (2013)
  24. X. Huang, Z. Zeng, and H. Zhang, Metal dichalcogenide nanosheets: Preparation, properties and applications, Chem. Soc. Rev. 42(5), 1934 (2013) (10.1039/c2cs35387c) / Chem. Soc. Rev. by X Huang (2013)
  25. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013) (10.1126/science.1235547) / Science by L Britnell (2013)
  26. R. Zan, Q. M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, and K. S. Novoselov, Control of radiation damage in MoS2 by graphene encapsulation, ACS Nano 7(11), 10167 (2013) (10.1021/nn4044035) / ACS Nano by R Zan (2013)
  27. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, London: Imperial College, 1998 (10.1142/p080) / Physical Properties of Carbon Nanotubes by R Saito (1998)
  28. J. W. Jiang, H. S. Park, and T. Rabczuk, Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity, J. Appl. Phys. 114(6), 064307 (2013) (10.1063/1.4818414) / J. Appl. Phys. by J W Jiang (2013)
  29. A. Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B 84(15), 155413 (2011) (10.1103/PhysRevB.84.155413) / Phys. Rev. B by A Molina-Sánchez (2011)
  30. N. Wakabayashi, H. G. Smith, and R. M. Nicklow, Lattice dynamics of hexagonal MoS2 studied by neutron scattering, Phys. Rev. B 12(2), 659 (1975) (10.1103/PhysRevB.12.659) / Phys. Rev. B by N Wakabayashi (1975)
  31. G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996) (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  32. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Jun-quera, P. Ordejon, and D. Sánchez-Portal, The siesta method for ab initio ordern materials simulation, J. Phys.: Condens. Matter 14(11), 2745 (2002) (Code available from http://www.icmab.es/dmmis/leem/siesta/ .) / J. Phys.: Condens. Matter by J M Soler (2002)
  33. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys.: Condens. Matter 14(4), 783 (2002) / J. Phys.: Condens. Matter by D W Brenner (2002)
  34. J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett. 61(25), 2879 (1988) (10.1103/PhysRevLett.61.2879) / Phys. Rev. Lett. by J Tersoff (1988)
  35. F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31(8), 5262 (1985) (10.1103/PhysRevB.31.5262) / Phys. Rev. B by F H Stillinger (1985)
  36. F. F. Abraham and I. P. Batra, Theoretical interpretation of atomic force microscope images of graphite, Surf. Sci. 209(1–2), L125 (1989) (10.1016/0039-6028(89)90053-8) / Surf. Sci. by F F Abraham (1989)
  37. T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, Bond softening in monolayer graphite formed on transitionmetal carbide surfaces, Phys. Rev. B 42(18), 11469 (1990) (10.1103/PhysRevB.42.11469) / Phys. Rev. B by T Aizawa (1990)
  38. T. Liang, S. R. Phillpot, and S. B. Sinnott, Parametrization of a reactive many-body potential for Mo-S systems, Phys. Rev. B 79(24), 245110 (2009) (10.1103/PhysRevB.79.245110) / Phys. Rev. B by T Liang (2009)
  39. J. A. Stewart and D. E. Spearot, Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2), Model. Simul. Mater. Sci. Eng. 21(4), 045003 (2013) (10.1088/0965-0393/21/4/045003) / Model. Simul. Mater. Sci. Eng. by J A Stewart (2013)
  40. J. D. Gale, Gulp: A computer program for the symmetryadapted simulation of solids, J. Chem. Soc., Faraday Trans. 93(4), 629 (1997) (Code available from https://projects.ivec.org/gulp/ .) (10.1039/a606455h) / J. Chem. Soc., Faraday Trans. by J D Gale (1997)
  41. Lammps, http://www.cs.sandia.gov/~sjplimp/lammps.html (2012)
  42. S. Jiménez Sandoval, D. Yang, R. F. Frindt, and J. C. Irwin, Raman study and lattice dynamics of single molecular layers of MoS2, Phys. Rev. B 44(8), 3955 (1991) (10.1103/PhysRevB.44.3955) / Phys. Rev. B by S Jiménez Sandoval (1991)
  43. E. Dobardžić, I. Milosevic, B. Dakic, and M. Damnjanovic,, Raman and infrared-active modes in MS2 nanotubes (M=Mo,W), Phys. Rev. B 74(3), 033403 (2006) (10.1103/PhysRevB.74.033403) / Phys. Rev. B by E Dobardžić (2006)
  44. M. Damnjanovic, E. Dobardzic, I. Miloeevic, M. Virsek, and M. Remskar, Phonons in MoS2 and WS2 nanotubes, Mater. Manuf. Process. 23(6), 579 (2008) (10.1080/10426910802160361) / Mater. Manuf. Process. by M Damnjanovic (2008)
  45. H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, Vibrational properties of graphene and graphene layers, Journal of Raman Spectroscopy 40(12), 1791 (2009) (10.1002/jrs.2321) / Journal of Raman Spectroscopy by H Wang (2009)
  46. X. Zhang, W. Han, J. Wu, S. Milana, Y. Lu, Q. Li, A. Ferrari, and P. Tan, Raman spectroscopy of shear and layer breathing modes in multilayer MoS2, Phys. Rev. B 87, 115413 (2013) (10.1103/PhysRevB.87.115413) / Phys. Rev. B by X Zhang (2013)
  47. J. W. Jiang, H. S. Park, and T. Rabczuk, MoS2 nanoresonators: Intrinsically better than graphene? Nanoscale 6(7), 3618 (2014) (10.1039/c3nr05991j) / Nanoscale by J W Jiang (2014)
  48. F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B 76(6), 064120 (2007) (10.1103/PhysRevB.76.064120) / Phys. Rev. B by F Liu (2007)
  49. F. Hao, D. Fang, and Z. Xu, Mechanical and thermal transport properties of graphene with defects, Appl. Phys. Lett. 99(4), 041901 (2011) (10.1063/1.3615290) / Appl. Phys. Lett. by F Hao (2011)
  50. Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, and Y. Chen, Anisotropic mechanical properties of graphene sheets from molecular dynamics, Physica B 405(5), 1301 (2010) (10.1016/j.physb.2009.11.071) / Physica B by Z Ni (2010)
  51. Y. Gao and P. Hao, Mechanical properties of mono-layer graphene under tensile and compressive loading, Physica E 41(8), 1561 (2009) (10.1016/j.physe.2009.04.033) / Physica E by Y Gao (2009)
  52. Y. Guo, L. Jiang, and W. Guo, Opening carbon nanotubes into zigzag graphene nanoribbons by energy-optimum oxidation, Phys. Rev. B 82(11), 115440 (2010) (10.1103/PhysRevB.82.115440) / Phys. Rev. B by Y Guo (2010)
  53. Y. Zheng, N. Wei, Z. Fan, L. Xu, and Z. Huang, Mechanical properties of grafold: A demonstration of strengthened graphene, Nanotechnology 22(40), 405701 (2011) (10.1088/0957-4484/22/40/405701) / Nanotechnology by Y Zheng (2011)
  54. Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagonheptagon defects in graphene, Nat. Mater. 11(9), 759 (2012) (10.1038/nmat3370) / Nat. Mater. by Y Wei (2012)
  55. Y. Zhang and C. Pan, Measurements of mechanical properties and number of layers of graphene from nano-indentation, Diamond Related Materials 24, 1 (2012) (10.1016/j.diamond.2012.01.033) / Diamond Related Materials by Y Zhang (2012)
  56. Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, and J. Li, Mechanical and electronic properties of monolayer MoS2 under elastic strain, Phys. Lett. A 376(12–13), 1166 (2012) (10.1016/j.physleta.2012.02.029) / Phys. Lett. A by Q Yue (2012)
  57. Y. Huang, J. Wu, and K. C. Hwang, Thickness of graphene and single-wall carbon nanotubes, Phys. Rev. B 74(24), 245413 (2006) (10.1103/PhysRevB.74.245413) / Phys. Rev. B by Y Huang (2006)
  58. L. Shen, H. S. Shen, and C. L. Zhang, Temperature-dependent elastic properties of single layer graphene sheets, Mater. Des. 31(9), 4445 (2010) (10.1016/j.matdes.2010.04.016) / Mater. Des. by L Shen (2010)
  59. T. Han, P. He, Y. Luo, and X. Zhang, Research progress in the mechanical properties of graphene, Advances in Mechanics 41(3), 279 (2011) / Advances in Mechanics by T Han (2011)
  60. L. Xu, N. Wei, Y. Zheng, Z. Fan, H. Q. Wang, and J. C. Zheng, Graphene-nanotube 3d networks: Intriguing thermal and mechanical properties, J. Mater. Chem. 22(4), 1435 (2011) (10.1039/C1JM13799A) / J. Mater. Chem. by L Xu (2011)
  61. J. W. Jiang, J. S. Wang, and B. Li, Elastic and nonlinear stiffness of graphene: A simple approach, Phys. Rev. B 81(7), 073405 (2010) (10.1103/PhysRevB.81.073405) / Phys. Rev. B by J W Jiang (2010)
  62. S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano 5(12), 9703 (2011) (10.1021/nn203879f) / ACS Nano by S Bertolazzi (2011)
  63. R. C. Cooper, C. Lee, C. A. Marianetti, X. Wei, J. Hone, and J. W. Kysar, Erratum: Nonlinear elastic behavior of two-dimensional molybdenum disulfide [Phys. Rev. B 87, 035423 (2013)], Phys. Rev. B 87(7), 079901 (2013) (10.1103/PhysRevB.87.079901) / Phys. Rev. B by R C Cooper (2013)
  64. K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures arXiv: 1407.2669 (2014) / Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures arXiv: 1407.2669 by K Liu (2014)
  65. A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agrait, and G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nano sheets, Adv. Mater. 24(6), 772 (2012) (10.1002/adma.201103965) / Adv. Mater. by A Castellanos-Gomez (2012)
  66. E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Nonlinear elasticity of monolayer graphene, Phys. Rev. Lett. 102(23), 235502 (2009) (10.1103/PhysRevLett.102.235502) / Phys. Rev. Lett. by E Cadelano (2009)
  67. C. D. Reddy, S. Rajendran, and K. M. Liew, Equilibrium configuration and continuum elastic properties of finite sized graphene, Nanotechnology 17(3), 864 (2006) (10.1088/0957-4484/17/3/042) / Nanotechnology by C D Reddy (2006)
  68. H. Zhao, K. Min, and N. R. Aluru, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension, Nano Lett. 9(8), 3012 (2009) (10.1021/nl901448z) / Nano Lett. by H Zhao (2009)
  69. P. Tao, H. Guo, T. Yang, and Z. Zhang, Strain-induced magnetism in MoS2 monolayer with defects, J. Appl. Phys. 115(5), 054305 (2014) (10.1063/1.4864015) / J. Appl. Phys. by P Tao (2014)
  70. Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2, Nat. Nanotechnol. 9(5), 391 (2014) (10.1038/nnano.2014.64) / Nat. Nanotechnol. by Y C Lin (2014)
  71. J. W. Jiang, Phonon bandgap engineering of strained monolayer MoS2, Nanoscale 6(14), 8326 (2014) (10.1039/c4nr00279b) / Nanoscale by J W Jiang (2014)
  72. M. Kan, J. Y. Wang, X. W. Li, S. H. Zhang, Y. W. Li, Y. Kawazoe, Q. Sun, and P. Jena, Structures and phase transition of a MoS2 monolayer, J. Phys. Chem. C 118(3), 1515 (2014) (10.1021/jp4076355) / J. Phys. Chem. C by M Kan (2014)
  73. K. Q. Dang, J. P. Simpson, and D. E. Spearot, Phase transformation in monolayer molybdenum disulphide (MoS2) under tension predicted by molecular dynamics simulations, Scr. Mater. 76, 41 (2014) (10.1016/j.scriptamat.2013.12.011) / Scr. Mater. by K Q Dang (2014)
  74. Y. Wei, B. Wang, J. Wu, R. Yang, and M. L. Dunn, Bending rigidity and gaussian bending stiffness of single-layered graphene, Nano Lett. 13(1), 26 (2013) (10.1021/nl303168w) / Nano Lett. by Y Wei (2013)
  75. X. Zhou, J. J. Zhou, and Z. C. Ou-Yang, Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Phys. Rev. B 62(20), 13692 (2000) (10.1103/PhysRevB.62.13692) / Phys. Rev. B by X Zhou (2000)
  76. T. Ma, B. Li, and T. Chang, Chirality- and curvature-dependent bending stiffness of single layer graphene, Appl. Phys. Lett. 99(20), 201901 (2011) (10.1063/1.3660739) / Appl. Phys. Lett. by T Ma (2011)
  77. Y. Shen and H. Wu, Interlayer shear effect on multilayer graphene subjected to bending, Appl. Phys. Lett. 100(10), 101909 (2012) (10.1063/1.3693390) / Appl. Phys. Lett. by Y Shen (2012)
  78. X. Shi, B. Peng, N. M. Pugno, and H. Gao, Stretch-induced softening of bending rigidity in graphene, Appl. Phys. Lett. 100(19), 191913 (2012) (10.1063/1.4716024) / Appl. Phys. Lett. by X Shi (2012)
  79. M. Arroyo and T. Belytschko, Finite crystal elasticity of carbon nanotubes based on the exponential cauchy-born rule, Phys. Rev. B 69(11), 115415 (2004) (10.1103/PhysRevB.69.115415) / Phys. Rev. B by M Arroyo (2004)
  80. Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, Super-elastic graphene ripples for flexible strain sensors, ACS Nano 5(5), 3645 (2011) (10.1021/nn103523t) / ACS Nano by Y Wang (2011)
  81. J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, and J. M. Zuo, Free folding of suspended graphene sheets by random mechanical stimulation, Phys. Rev. Lett. 104(16), 166805 (2010) (10.1103/PhysRevLett.104.166805) / Phys. Rev. Lett. by J Zhang (2010)
  82. J. X. Shi, Q. Q. Ni, X. W. Lei, and T. Natsuki, Nonlocal elasticity theory for the buckling of double-layer graphene nanoribbons based on a continuum model, Comput. Mater. Sci. 50(11), 3085 (2011) (10.1016/j.commatsci.2011.05.031) / Comput. Mater. Sci. by J X Shi (2011)
  83. C. Wang, L. Lan, and H. Tan, The physics of wrinkling in graphene membranes under local tension, Phys. Chem. Chem. Phys. 15(8), 2764 (2013) (10.1039/c2cp44033d) / Phys. Chem. Chem. Phys. by C Wang (2013)
  84. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd Ed., New York: McGraw-Hill, 1987 / Theory of Plates and Shells by S Timoshenko (1987)
  85. J. W. Jiang, The buckling of single-layer MoS2 under uniaxial compression, Nanotechnology 25(35), 355402 (2014) (10.1088/0957-4484/25/35/355402) / Nanotechnology by J W Jiang (2014)
  86. M. Zhou, Y. Zhai, and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem. 81(14), 5603 (2009) (10.1021/ac900136z) / Anal. Chem. by M Zhou (2009)
  87. Y. Xu, C. Chen, V. V. Deshpande, F. A. DiRenno, A. Gondarenko, D. B. Heinz, S. Liu, P. Kim, and J. Hone, Radio frequency electrical transduction of graphene mechanical resonators, Appl. Phys. Lett. 97(24), 243111 (2010) (10.1063/1.3528341) / Appl. Phys. Lett. by Y Xu (2010)
  88. X. Q. He, S. Kitipornchai, and K. M. Liew, Resonance analysis of multi-layered graphene sheets used as nanoscale resonators, Nanotechnology 16(10), 2086 (2005) (10.1088/0957-4484/16/10/018) / Nanotechnology by X Q He (2005)
  89. Y. Liu, Z. Xu, and Q. Zheng, The interlayer shear effect on graphene multilayer resonators, J. Mech. Phys. Solids 59(8), 1613 (2011) (10.1016/j.jmps.2011.04.014) / J. Mech. Phys. Solids by Y Liu (2011)
  90. J. Wang, X. He, S. Kitipornchai, and H. Zhang, Geometrical nonlinear free vibration of multi-layered graphene sheets, J. Phys. D: Appl. Phys. 44(13), 135401 (2011) (10.1088/0022-3727/44/13/135401) / J. Phys. D: Appl. Phys. by J Wang (2011)
  91. Y. Xu, S. Yan, Z. Jin, and Y. Wang, Quantum-squeezing effects of strained multilayer graphene nems, Nanoscale Res. Lett. 6(1), 355 (2011) (10.1186/1556-276X-6-355) / Nanoscale Res. Lett. by Y Xu (2011)
  92. F. Gu, J. H. Zhang, L. J. Yang, and B. Gu, Molecular dynamics simulation of resonance properties of strain graphene nanoribbons, Acta Phys. Sin. 60(5), 056103 (2011) (10.7498/aps.60.056103) / Acta Phys. Sin. by F Gu (2011)
  93. Z. B. Shen, H. L. Tang, D. K. Li, and G. J. Tang, Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory, Comput. Mater. Sci. 61, 200 (2012) (10.1016/j.commatsci.2012.04.003) / Comput. Mater. Sci. by Z B Shen (2012)
  94. S. M. Zhou, L. P. Sheng, and Z. B. Shen, Transverse vibration of circular graphene sheet-based mass sensor via nonlocal Kirchhoff plate theory, Comput. Mater. Sci. 86, 73 (2014) (10.1016/j.commatsci.2014.01.031) / Comput. Mater. Sci. by S M Zhou (2014)
  95. K. L. Ekinci and M. L. Roukes, Nanoelectromechanical systems, Rev. Sci. Instrum. 76(6), 061101 (2005) (10.1063/1.1927327) / Rev. Sci. Instrum. by K L Ekinci (2005)
  96. A. M. Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Large-scale arrays of singlelayer graphene resonators, Nano Lett. 10(12), 4869 (2010) (10.1021/nl102713c) / Nano Lett. by A M Zande (2010)
  97. C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Performance of monolayer graphene nanomechanical resonators with electrical read-out, Nat. Nanotechnol. 4(12), 861 (2009) (10.1038/nnano.2009.267) / Nat. Nanotechnol. by C Chen (2009)
  98. J. W. Jiang, B. S. Wang, H. S. Park, and T. Rabczuk, Adsorbate migration effects on continuous and discontinuous temperature-dependent transitions in the quality factors of graphene nanoresonators, Nanotechnology 25(2), 025501 (2014) (10.1088/0957-4484/25/2/025501) / Nanotechnology by J W Jiang (2014)
  99. C. Edblom and A. Isacsson, Diffusion-induced dissipation and mode coupling in nanomechanical resonators arXiv: 1406.1365v1 (2014) / Diffusion-induced dissipation and mode coupling in nanomechanical resonators arXiv: 1406.1365v1 by C Edblom (2014)
  100. A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene, Nat. Nanotechnol. 6(6), 339 (2011) (10.1038/nnano.2011.71) / Nat. Nanotechnol. by A Eichler (2011)
  101. A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, Singlelayer MoS2 mechanical resonators, Adv. Mater. 25(46), 6719 (2013) (10.1002/adma.201303569) / Adv. Mater. by A Castellanos-Gomez (2013)
  102. J. Lee, Z. Wang, K. He, J. Shan, and P. X. L. Feng, High frequency MoS2 nanomechanical resonators, ACS Nano 7(7), 6086 (2013) (10.1021/nn4018872) / ACS Nano by J Lee (2013)
  103. A. A. Balandin, Low-frequency 1/f noise in graphene devices, Nat. Nanotechnol. 8(8), 549 (2013) (10.1038/nnano.2013.144) / Nat. Nanotechnol. by A A Balandin (2013)
  104. Y. M. Lin and P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices, Nano Lett. 8(8), 2119 (2008) (10.1021/nl080241l) / Nano Lett. by Y M Lin (2008)
  105. A. N. Pal and A. Ghosh, Resistance noise in electrically biased bilayer graphene, Phys. Rev. Lett. 102(12), 126805 (2009) (10.1103/PhysRevLett.102.126805) / Phys. Rev. Lett. by A N Pal (2009)
  106. Z. Cheng, Q. Li, Z. Li, Q. Zhou, and Y. Fang, Suspended graphene sensors with improved signal and reduced noise, Nano Lett. 10(5), 1864 (2010) (10.1021/nl100633g) / Nano Lett. by Z Cheng (2010)
  107. S. Rumyantsev, G. Liu, W. Stillman, M. Shur, and A. A. Balandin, Electrical and noise characteristics of graphene fieldeffect transistors: Ambient effects, noise sources and physical mechanisms, J. Phys.: Condens. Matter 22(39), 395302 (2010) / J. Phys.: Condens. Matter by S Rumyantsev (2010)
  108. G. Liu, S. Rumyantsev, M. Shur, and A. A. Balandin, Graphene thickness-graded transistors with reduced electronic noise, Appl. Phys. Lett. 100(3), 033103 (2012) (10.1063/1.3676277) / Appl. Phys. Lett. by G Liu (2012)
  109. M. Z. Hossain, S. L. Roumiantsev, M. Shur, and A. A. Balandin, Reduction of 1/f noise in graphene after electronbeam irradiation, Appl. Phys. Lett. 102(15), 153512 (2013) (10.1063/1.4802759) / Appl. Phys. Lett. by M Z Hossain (2013)
  110. K. Saito, J. Nakamura, and A. Natori, Ballistic thermal conductance of a graphene sheet, Phys. Rev. B 76(11), 115409 (2007) (10.1103/PhysRevB.76.115409) / Phys. Rev. B by K Saito (2007)
  111. S. Yien, V. Tayari, J. O. Island, J. M. Porter, and A. R. Champagne, Electronic thermal conductivity measurements in intrinsic graphene, Phys. Rev. B 87(24), 241411 (2013) (10.1103/PhysRevB.87.241411) / Phys. Rev. B by S Yien (2013)
  112. J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008) (10.1140/epjb/e2008-00195-8) / Eur. Phys. J. B by J S Wang (2008)
  113. J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium greens function method for quantum thermal transport, Front. Phys. 9(6), 673 (2013) (10.1007/s11467-013-0340-x) / Front. Phys. by J S Wang (2013)
  114. S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat. Mater. 11(3), 203 (2012) (10.1038/nmat3207) / Nat. Mater. by S Chen (2012)
  115. Z. Guo, D. Zhang, and X. G. Gong, Thermal conductivity of graphene nanoribbons, Appl. Phys. Lett. 95(16), 163103 (2009) (10.1063/1.3246155) / Appl. Phys. Lett. by Z Guo (2009)
  116. Y. Xu, X. Chen, B. L. Gu, and W. Duan, Intrinsic anisotropy of thermal conductance in graphene nanoribbons, Appl. Phys. Lett. 95(23), 233116 (2009) (10.1063/1.3272678) / Appl. Phys. Lett. by Y Xu (2009)
  117. S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments, ACS Nano 5(1), 321 (2011) (10.1021/nn102915x) / ACS Nano by S Chen (2011)
  118. N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology 22(10), 105705 (2011) (10.1088/0957-4484/22/10/105705) / Nanotechnology by N Wei (2011)
  119. Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, In-plane lattice thermal conductivities of multilayer graphene films, Carbon 49(8), 2653 (2011) (10.1016/j.carbon.2011.02.051) / Carbon by Z Wei (2011)
  120. Z. X. Xie, K. Q. Chen, and W. Duan, Thermal transport by phonons in zigzag graphene nanoribbons with structural defects, J. Phys.: Condens. Matter 23(31), 315302 (2011) / J. Phys.: Condens. Matter by Z X Xie (2011)
  121. X. Zhai and G. Jin, Stretching-enhanced ballistic thermal conductance in graphene nanoribbons, Europhys. Lett. 96(1), 16002 (2011) (10.1209/0295-5075/96/16002) / Europhys. Lett. by X Zhai (2011)
  122. X. F. Peng, X. J. Wang, Z. Q. Gong, and K. Q. Chen, Ballistic thermal conductance in graphene nanoribbon with double-cavity structure, Appl. Phys. Lett. 99(23), 233105 (2011) (10.1063/1.3666221) / Appl. Phys. Lett. by X F Peng (2011)
  123. F. Ma, H. B. Zheng, Y. J. Sun, D. Yang, K. W. Xu, and P. K. Chu, Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene, Appl. Phys. Lett. 101(11), 111904 (2012) (10.1063/1.4752010) / Appl. Phys. Lett. by F Ma (2012)
  124. Z. X. Guo, J. W. Ding, and X. G. Gong, Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons, Phys. Rev. B 85(23), 235429 (2012) (10.1103/PhysRevB.85.235429) / Phys. Rev. B by Z X Guo (2012)
  125. N. Mingo and D. A. Broido, Carbon nanotube ballistic thermal conductance and its limits, Phys. Rev. Lett. 95(9), 096105 (2005) (10.1103/PhysRevLett.95.096105) / Phys. Rev. Lett. by N Mingo (2005)
  126. N. Mingo and D. A. Broido, Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”, Nano Lett. 5(7), 1221 (2005) (10.1021/nl050714d) / Nano Lett. by N Mingo (2005)
  127. D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering, Phys. Rev. B 79(15), 155413 (2009) (10.1103/PhysRevB.79.155413) / Phys. Rev. B by D L Nika (2009)
  128. D. L. Nika, A. S. Askerov, and A. A. Balandin, Anomalous size dependence of the thermal conductivity of graphene ribbons, Nano Lett. 12(6), 3238 (2012) (10.1021/nl301230g) / Nano Lett. by D L Nika (2012)
  129. X. Xu, L. F. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. Tinh Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. Li, and B. Özyilmaz, Lengthdependent thermal conductivity in suspended single-layer graphene, Nat. Commun. 5, 3689 (2014) (10.1038/ncomms4689) / Nat. Commun. by X Xu (2014)
  130. D. L. Nika, E. P. Pokatilov, and A. A. Balandin, Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches, Phys. Status Solidi B 248(11), 2609 (2011) (10.1002/pssb.201100186) / Phys. Status Solidi B by D L Nika (2011)
  131. J. Wang, X. M. Wang, Y. F. Chen, and J. S. Wang, Dimensional crossover of thermal conductance in graphene nanoribbons: A first-principles approach, J. Phys.: Condens. Matter 24(29), 295403 (2012) / J. Phys.: Condens. Matter by J Wang (2012)
  132. D. L. Nika and A. A. Balandin, Two-dimensional phonon transport in graphene, J. Phys.: Condens. Matter 24(23), 233203 (2012) / J. Phys.: Condens. Matter by D L Nika (2012)
  133. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012) (10.1103/RevModPhys.84.1045) / Rev. Mod. Phys. by N Li (2012)
  134. J. W. Jiang, J. Lan, J. S. Wang, and B. Li, Iso-topic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism, J. Appl. Phys. 107(5), 054314 (2010) (10.1063/1.3329541) / J. Appl. Phys. by J W Jiang (2010)
  135. W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett. 10(5), 1645 (2010) (10.1021/nl9041966) / Nano Lett. by W Cai (2010)
  136. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008) (10.1021/nl0731872) / Nano Lett. by A A Balandin (2008)
  137. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett. 92(15), 151911 (2008) (10.1063/1.2907977) / Appl. Phys. Lett. by S Ghosh (2008)
  138. L. Lindsay, D. A. Broido, and N. Mingo, Flexural phonons and thermal transport in multilayer graphene and graphite, Phys. Rev. B 83(23), 235428 (2011) (10.1103/PhysRevB.83.235428) / Phys. Rev. B by L Lindsay (2011)
  139. Z. Aksamija and I. Knezevic, Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering, Appl. Phys. Lett. 98(14), 141919 (2011) (10.1063/1.3569721) / Appl. Phys. Lett. by Z Aksamija (2011)
  140. L. Chen and S. Kumar, Thermal transport in graphene supported on copper, J. Appl. Phys. 112(4), 043502 (2012) (10.1063/1.4740071) / J. Appl. Phys. by L Chen (2012)
  141. Z. Wei, J. Yang, K. Bi, and Y. Chen, Mode dependent lattice thermal conductivity of single layer graphene, J. Appl. Phys. 116(15), 153503 (2014) (10.1063/1.4898338) / J. Appl. Phys. by Z Wei (2014)
  142. S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9(7), 555 (2010) (10.1038/nmat2753) / Nat. Mater. by S Ghosh (2010)
  143. D. Singh, J. Y. Murthy, and T. S. Fisher, Mechanism of thermal conductivity reduction in few-layer graphene, J. Appl. Phys. 110(4), 044317 (2011) (10.1063/1.3622300) / J. Appl. Phys. by D Singh (2011)
  144. G. Zhang and H. Zhang, Thermal conduction and rectification in few-layer graphene y junctions, Nanoscale 3(11), 4604 (2011) (10.1039/c1nr10945f) / Nanoscale by G Zhang (2011)
  145. W.R. Zhong, M.P. Zhang, B.Q. Ai, and D.Q. Zheng, Chirality and thickness-dependent thermal conductivity of fewlayer graphene: A molecular dynamics study, Appl. Phys. Lett. 98(11), 113107 (2011) (10.1063/1.3567415) / Appl. Phys. Lett. by WR Zhong (2011)
  146. W. R. Zhong, W. H. Huang, X. R. Deng, and B. Q. Ai, Thermal rectification in thickness-asymmetric graphene nanoribbons, Appl. Phys. Lett. 99(19), 193104 (2011) (10.1063/1.3659474) / Appl. Phys. Lett. by W R Zhong (2011)
  147. A. Rajabpour and S. M. Vaez Allaei, Tuning thermal conductivity of bilayer graphene by inter-layer sp3 bonding: A molecular dynamics study, Appl. Phys. Lett. 101(5), 053115 (2012) (10.1063/1.4740259) / Appl. Phys. Lett. by A Rajabpour (2012)
  148. H. Y. Cao, Z. X. Guo, H. Xiang, and X. G. Gong, Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons, Phys. Lett. A 376(4), 525 (2012) (10.1016/j.physleta.2011.11.016) / Phys. Lett. A by H Y Cao (2012)
  149. T. Sun, J. Wang, and W. Kang, Van der waals interactiontuned heat transfer in nanostructures, Nanoscale 5(1), 128 (2012) (10.1039/C2NR32481D) / Nanoscale by T Sun (2012)
  150. S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, Temperature dependent raman studies and thermal conductivity of few layer MoS2, J. Phys. Chem. C 117(17), 9042 (2013) (10.1021/jp402509w) / J. Phys. Chem. C by S Sahoo (2013)
  151. V. Varshney, S. S. Patnaik, C. Muratore, A. K. Roy, A. A. Voevodin, and B. L. Farmer, Md simulations of molybdenum disulphide (MoS2): Force-field parameterization and thermal transport behavior, Comput. Mater. Sci. 48(1), 101 (2010) (10.1016/j.commatsci.2009.12.009) / Comput. Mater. Sci. by V Varshney (2010)
  152. W. Huang, H. Da, and G. Liang, Thermoelectric performance of MX2 (M=Mo, W; X=S, Se) monolayers, J. Appl. Phys. 113(10), 104304 (2013) (10.1063/1.4794363) / J. Appl. Phys. by W Huang (2013)
  153. J. W. Jiang, X. Y. Zhuang, and T. Rabczuk, Orientation dependent thermal conductance in single-layer MoS2, Scientific Reports 3, 2209 (2013) (10.1038/srep02209) / Scientific Reports by J W Jiang (2013)
  154. J. W. Jiang, J. S. Wang, and B. Li, Thermal conductance of graphene and dimerite, Phys. Rev. B 79(20), 205418 (2009) (10.1103/PhysRevB.79.205418) / Phys. Rev. B by J W Jiang (2009)
  155. X. Liu, G. Zhang, Q. X. Pei, and Y. W. Zhang, Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons, Appl. Phys. Lett. 103(13), 133113 (2013) (10.1063/1.4823509) / Appl. Phys. Lett. by X Liu (2013)
  156. Z. Yan, G. Liu, J. M. Khan, and A. A. Balandin, Graphene quilts for thermal management of high-power gan transistors, Nat. Commun. 3, 827 (2012) (10.1038/ncomms1828) / Nat. Commun. by Z Yan (2012)
  157. V. Goyal and A. A. Balandin, Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials, Appl. Phys. Lett. 100(7), 073113 (2012) (10.1063/1.3687173) / Appl. Phys. Lett. by V Goyal (2012)
  158. K. M. F. Shahil and A. A. Balandin, Graphenemultilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett. 12(2), 861 (2012) (10.1021/nl203906r) / Nano Lett. by K M F Shahil (2012)
  159. P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources 248(15), 37 (2014) (10.1016/j.jpowsour.2013.08.135) / J. Power Sources by P Goli (2014)
  160. H. Malekpour, K. H. Chang, J. C. Chen, C. Y. Lu, D. L. Nika, K. S. Novoselov, and A. A. Balandin, Thermal conductivity of graphene laminate, Nano Lett. 14(9), 5155 (2014) (10.1021/nl501996v) / Nano Lett. by H Malekpour (2014)
  161. P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Fabrication of exfoliated graphene-based polypropy-lene nanocomposites with enhanced mechanical and thermal properties, Polymer 52(18), 4001 (2011) (10.1016/j.polymer.2011.06.045) / Polymer by P Song (2011)
  162. W. Yu, H. Xie, and D. Bao, Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets, Nanotechnology 21(5), 055705 (2010) (10.1088/0957-4484/21/5/055705) / Nanotechnology by W Yu (2010)
  163. W. Yu, H. Xie, and W. Chen, Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets, J. Appl. Phys. 107(9), 094317 (2010) (10.1063/1.3372733) / J. Appl. Phys. by W Yu (2010)
  164. W. Yu, H. Xie, X. Wang, and X. Wang, Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Phys. Lett. A 375(10), 1323 (2011) (10.1016/j.physleta.2011.01.040) / Phys. Lett. A by W Yu (2011)
  165. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, et al., Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113, 131030 (2009) / J. Phys. Chem. C by Y Wang (2009)
  166. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005) (10.1038/nature04233) / Nature by K S Novoselov (2005)
  167. S. Y. Zhou, G. H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D.H. Lee, S. G. Louie, and A. Lanzara, First direct observation of Dirac fermions in graphite, Nat. Phys. 2(9), 595 (2006) (10.1038/nphys393) / Nat. Phys. by S Y Zhou (2006)
  168. B. Partoens and F. M. Peeters, Normal and dirac fermions in graphene multilayers: Tight-binding description of the electronic structure, Phys. Rev. B 75(19), 193402 (2007) (10.1103/PhysRevB.75.193402) / Phys. Rev. B by B Partoens (2007)
  169. J. Hass, F. Varchon, J. E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. First, L. Magaud, and E. Conrad, Why multi-layer graphene on 4h-sic 0001̄ behaves like a single sheet of graphene, Phys. Rev. Lett. 100(12), 125504 (2008) (10.1103/PhysRevLett.100.125504) / Phys. Rev. Lett. by J Hass (2008)
  170. S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, Tight-binding description of graphene, Phys. Rev. B 66(3), 035412 (2002) (10.1103/PhysRevB.66.035412) / Phys. Rev. B by S Reich (2002)
  171. V. Pereira, A. Castro Neto, and N. Peres, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B 80(4), 045401 (2009) (10.1103/PhysRevB.80.045401) / Phys. Rev. B by V Pereira (2009)
  172. F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy gaps and a zero-field quantum hall effect in graphene by strain engineering, Nat. Phys. 6(1), 30 (2010) (10.1038/nphys1420) / Nat. Phys. by F Guinea (2010)
  173. K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54(24), 17954 (1996) (10.1103/PhysRevB.54.17954) / Phys. Rev. B by K Nakada (1996)
  174. K. K. Kam and B. A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group vi transition metal dichalcogenides, J. Phys. Chem. 86(4), 463 (1982) (10.1021/j100393a010) / J. Phys. Chem. by K K Kam (1982)
  175. T. Eknapakul, P. D. C. King, M. Asakawa, P. Buaphet, R. H. He, S. K. Mo, H. Takagi, K. M. Shen, F. Baumberger, T. Sasagawa, S. Jungthawan, and W. Meevasana, Electronic structure of a quasi-freestanding MoS2 monolayer, Nano Lett. 14(3), 1312 (2014) (10.1021/nl4042824) / Nano Lett. by T Eknapakul (2014)
  176. Y. Li, Z. Zhou, S. Zhang, and Z. Chen, MoS2 nanorib-bons: High stability and unusual electronic and magnetic properties, J. Am. Chem. Soc. 130(49), 16739 (2008) (10.1021/ja805545x) / J. Am. Chem. Soc. by Y Li (2008)
  177. P. Lu, X. Wu, W. Guo, and X. C. Zeng, Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes, Phys. Chem. Chem. Phys. 14(37), 13035 (2012) (10.1039/c2cp42181j) / Phys. Chem. Chem. Phys. by P Lu (2012)
  178. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011) (10.1038/nnano.2010.279) / Nat. Nanotechnol. by B Radisavljevic (2011)
  179. V. K. Sangwan, H. N. Arnold, D. Jariwala, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Low-frequency electronic noise in single-layer MoS2 transistors, Nano Lett. 13(9), 4351 (2013) (10.1021/nl402150r) / Nano Lett. by V K Sangwan (2013)
  180. E. Scalise, M. Houssa, G. Pourtois, V. Afanasev, and A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2, Nano Research 5(1), 43 (2012) (10.1007/s12274-011-0183-0) / Nano Research by E Scalise (2012)
  181. H. J. Conley, B. Wang, J. I. Ziegler, R. F. Jr Haglund, S. T. Pantelides, and K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13(8), 3626 (2013) (10.1021/nl4014748) / Nano Lett. by H J Conley (2013)
  182. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010) (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by K F Mak (2010)
  183. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008) (10.1126/science.1156965) / Science by R R Nair (2008)
  184. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, Ultrafast graphene photodetector, Nat. Nanotechnol. 4(12), 839 (2009) (10.1038/nnano.2009.292) / Nat. Nanotechnol. by F Xia (2009)
  185. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Raden-ovic, and A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol. 8(7), 497 (2013) (10.1038/nnano.2013.100) / Nat. Nanotechnol. by O Lopez-Sanchez (2013)
  186. C. H. Lui, A. J. Frenzel, D. V. Pilon, Y. H. Lee, X. Ling, G. M. Akselrod, et al., Trion induced negative photoconductivity in monolayer MoS2 arXiv: 1406.5100 (2014) / Trion induced negative photoconductivity in monolayer MoS2 arXiv: 1406.5100 by C H Lui (2014)
  187. K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, S. Kaushal, and A. Ghosh, Optically active heterostructures of graphene and ultrathin MoS2, Solid State Commun. 175–176, 35 (2013) (10.1016/j.ssc.2013.09.021) / Solid State Commun. by K Roy (2013)
  188. G. Algara-Siller, S. Kurasch, M. Sedighi, O. Lehtinen, and U. Kaiser, The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene, Appl. Phys. Lett. 103(20), 203107 (2013) (10.1063/1.4830036) / Appl. Phys. Lett. by G Algara-Siller (2013)
  189. N. Myoung, K. Seo, S. J. Lee, and G. Ihm, Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures, ACS Nano 7(8), 7021 (2013) (10.1021/nn402919d) / ACS Nano by N Myoung (2013)
  190. S. Bertolazzi, D. Krasnozhon, and A. Kis, Nonvolatile memory cells based on MoS2 /graphene heterostructures, Nano Lett. 7(4), 3246 (2013) / Nano Lett. by S Bertolazzi (2013)
  191. S. Larentis, J. R. Tolsma, B. Fallahazad, D. C. Dillen, K. Kim, A. H. MacDonald, and E. Tutuc, Band offset and negative compressibility in graphene-MoS2 heterostructures, Nano Lett. 14(4), 2039 (2014) (10.1021/nl500212s) / Nano Lett. by S Larentis (2014)
  192. W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, et al., Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Scientific Reports 4, 3826 (2014) (10.1038/srep03826) / Scientific Reports by W Zhang (2014)
  193. F. Xia, X. Hu, Y. Sun, W. Luo, and Y. Huang, Layer-bylayer assembled MoO2 graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries, Nanoscale 4(15), 4707 (2012) (10.1039/c2nr30742a) / Nanoscale by F Xia (2012)
  194. W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, et al., Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Scientific Reports 4, 3826 (2013) (10.1038/srep03826) / Scientific Reports by W Zhang (2013)
  195. H. Xu, D. He, M. Fu, W. Wang, H. Wu, and Y. Wang, Optical identification of MoS2/graphene heterostructure on SiO2/Si substrate, Opt. Express 22(13), 15969 (2014) (10.1364/OE.22.015969) / Opt. Express by H Xu (2014)
  196. L. F. Wang, T. B. Ma, Y. Z. Hu, Q. Zheng, H. Wang, and J. Luo, Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: A first-principles study, Nanotechnology 25(38), 385701 (2014) (10.1088/0957-4484/25/38/385701) / Nanotechnology by L F Wang (2014)
  197. Y. Ma, Y. Dai, M. Guo, C. Niu, and B. Huang, Graphene adhesion on MoS2 monolayer: An ab initio study, Nanoscale 3(9), 3883 (2011) (10.1039/c1nr10577a) / Nanoscale by Y Ma (2011)
  198. L. Yu, Y. H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics, Nano Lett. 14(6), 3055 (2014) (10.1021/nl404795z) / Nano Lett. by L Yu (2014)
  199. R. H. Miwa and W. L. Scopel, Lithium incorporation at the MoS2/graphene interface: An ab initio investigation, J. Phys.: Condens. Matter 25(44), 445301 (2013) / J. Phys.: Condens. Matter by R H Miwa (2013)
  200. J. W. Jiang and H. S. Park, Mechanical properties of MoS2/graphene heterostructures, Appl. Phys. Lett. 105(3), 033108 (2014) (10.1063/1.4891342) / Appl. Phys. Lett. by J W Jiang (2014)
  201. K. K. Karkkainen, A. H. Sihvola, and K. I. Nikoskinen, Effective permittivity of mixtures: Numerical validation by the FDTD method, IEEE Trans. Geosci. Rem. Sens. 38(3), 1303 (2000) (10.1109/36.843023) / IEEE Trans. Geosci. Rem. Sens. by K K Karkkainen (2000)
Dates
Type When
Created 10 years, 6 months ago (Feb. 5, 2015, 12:09 p.m.)
Deposited 3 months, 1 week ago (May 18, 2025, 7:16 a.m.)
Indexed 4 days, 16 hours ago (Aug. 23, 2025, 9:51 p.m.)
Issued 10 years, 6 months ago (Feb. 6, 2015)
Published 10 years, 6 months ago (Feb. 6, 2015)
Published Online 10 years, 6 months ago (Feb. 6, 2015)
Published Print 10 years, 2 months ago (June 1, 2015)
Funders 0

None

@article{Jiang_2015, title={Graphene versus MoS2: A short review}, volume={10}, ISSN={2095-0470}, url={http://dx.doi.org/10.1007/s11467-015-0459-z}, DOI={10.1007/s11467-015-0459-z}, number={3}, journal={Frontiers of Physics}, publisher={China Engineering Science Press Co. Ltd.}, author={Jiang, Jin-Wu}, year={2015}, month=feb, pages={287–302} }