Crossref
journal-article
China Engineering Science Press Co. Ltd.
Frontiers of Physics (6066)
References
201
Referenced
183
-
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
(
10.1038/nmat1849
) / Nat. Mater. by A K Geim (2007) -
A. H. C. Neto and K. Novoselov, New directions in science and technology: Two-dimensional crystals, Rep. Prog. Phys. 74(8), 082501 (2011)
(
10.1088/0034-4885/74/8/082501
) / Rep. Prog. Phys. by A H C Neto (2011) -
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of mono-layer graphene, Science 321(5887), 385 (2008)
(
10.1126/science.1157996
) / Science by C Lee (2008) -
R. C. Cooper, C. Lee, C. A. Marianetti, X. Wei, J. Hone, and J. W. Kysar, Nonlinear elastic behavior of two-dimensional molybdenum disulfide, Phys. Rev. B 87(3), 035423 (2013)
(
10.1103/PhysRevB.87.035423
) / Phys. Rev. B by R C Cooper (2013) -
Z. C. Ouyang, Z. B. Su, and C. L. Wang, Coil formation in multishell carbon nanotubes: Competition between curvature elasticity and interlayer adhesion, Phys. Rev. Lett. 78(21), 4055 (1997)
(
10.1103/PhysRevLett.78.4055
) / Phys. Rev. Lett. by Z C Ouyang (1997) -
Z. C. Tu and Z. C. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number, Phys. Rev. B 65(23), 233407 (2002)
(
10.1103/PhysRevB.65.233407
) / Phys. Rev. B by Z C Tu (2002) -
M. Arroyo and T. Belytschko, An atomistic-based nite deformation membrane for single layer crystalline films, J. Mech. Phys. Solids 50(9), 1941 (2002)
(
10.1016/S0022-5096(02)00002-9
) / J. Mech. Phys. Solids by M Arroyo (2002) -
Q. Lu, M. Arroyo, and R. Huang, Elastic bending modulus of monolayer graphene, J. Phys. D: Appl. Phys. 42(10), 102002 (2009)
(
10.1088/0022-3727/42/10/102002
) / J. Phys. D: Appl. Phys. by Q Lu (2009) -
J. W. Jiang, Z. Qi, H. S. Park, and T. Rabczuk, Elastic bending modulus of single-layer molybdenum disul-phide (MoS2): Finite thickness effect, Nanotechnology 24(43), 435705 (2013)
(
10.1088/0957-4484/24/43/435705
) / Nanotechnology by J W Jiang (2013) -
J. W. Jiang and H. S. Park, Negative Poisson’s ratio in single-layer black phosphorus, Nat. Commun. 5, 4727 (2014)
(
10.1038/ncomms5727
) / Nat. Commun. by J W Jiang (2014) -
A. C. Ferrari, Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143(1–2), 47 (2007)
(
10.1016/j.ssc.2007.03.052
) / Solid State Commun. by A C Ferrari (2007) -
A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
(
10.1103/RevModPhys.81.109
) / Rev. Mod. Phys. by A H Castro Neto (2009) -
A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
(
10.1126/science.1158877
) / Science by A K Geim (2009) -
L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dressel-haus, Raman spectroscopy in graphene, Physics Reports 473, 51 (2009)
(
10.1016/j.physrep.2009.02.003
) / Physics Reports by L M Malard (2009) -
C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govin-daraj, Graphene: The new two-dimensional nanomaterial, Angew. Chem. Int. Ed. 48(42), 7752 (2009)
(
10.1002/anie.200901678
) / Angew. Chem. Int. Ed. by C N R Rao (2009) -
M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110(1), 132 (2010)
(
10.1021/cr900070d
) / Chem. Rev. by M J Allen (2010) -
F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010)
(
10.1038/nphoton.2010.186
) / Nat. Photonics by F Bonaccorso (2010) -
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
(
10.1038/nnano.2010.89
) / Nat. Nanotechnol. by F Schwierz (2010) -
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
(
10.1038/nmat3064
) / Nat. Mater. by A A Balandin (2011) -
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
(
10.1038/nnano.2012.193
) / Nat. Nanotechnol. by Q H Wang (2012) -
M. Chhowalla, H. S. Shin, G. Eda, L. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
(
10.1038/nchem.1589
) / Nat. Chem. by M Chhowalla (2013) -
M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like twodimensional materials, Chem. Rev. 113(5), 3766 (2013)
(
10.1021/cr300263a
) / Chem. Rev. by M Xu (2013) -
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
(
10.1021/nn400280c
) / ACS Nano by S Z Butler (2013) -
X. Huang, Z. Zeng, and H. Zhang, Metal dichalcogenide nanosheets: Preparation, properties and applications, Chem. Soc. Rev. 42(5), 1934 (2013)
(
10.1039/c2cs35387c
) / Chem. Soc. Rev. by X Huang (2013) -
L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)
(
10.1126/science.1235547
) / Science by L Britnell (2013) -
R. Zan, Q. M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, and K. S. Novoselov, Control of radiation damage in MoS2 by graphene encapsulation, ACS Nano 7(11), 10167 (2013)
(
10.1021/nn4044035
) / ACS Nano by R Zan (2013) -
R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, London: Imperial College, 1998
(
10.1142/p080
) / Physical Properties of Carbon Nanotubes by R Saito (1998) -
J. W. Jiang, H. S. Park, and T. Rabczuk, Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity, J. Appl. Phys. 114(6), 064307 (2013)
(
10.1063/1.4818414
) / J. Appl. Phys. by J W Jiang (2013) -
A. Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B 84(15), 155413 (2011)
(
10.1103/PhysRevB.84.155413
) / Phys. Rev. B by A Molina-Sánchez (2011) -
N. Wakabayashi, H. G. Smith, and R. M. Nicklow, Lattice dynamics of hexagonal MoS2 studied by neutron scattering, Phys. Rev. B 12(2), 659 (1975)
(
10.1103/PhysRevB.12.659
) / Phys. Rev. B by N Wakabayashi (1975) -
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) - J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Jun-quera, P. Ordejon, and D. Sánchez-Portal, The siesta method for ab initio ordern materials simulation, J. Phys.: Condens. Matter 14(11), 2745 (2002) (Code available from http://www.icmab.es/dmmis/leem/siesta/ .) / J. Phys.: Condens. Matter by J M Soler (2002)
- D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys.: Condens. Matter 14(4), 783 (2002) / J. Phys.: Condens. Matter by D W Brenner (2002)
-
J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett. 61(25), 2879 (1988)
(
10.1103/PhysRevLett.61.2879
) / Phys. Rev. Lett. by J Tersoff (1988) -
F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31(8), 5262 (1985)
(
10.1103/PhysRevB.31.5262
) / Phys. Rev. B by F H Stillinger (1985) -
F. F. Abraham and I. P. Batra, Theoretical interpretation of atomic force microscope images of graphite, Surf. Sci. 209(1–2), L125 (1989)
(
10.1016/0039-6028(89)90053-8
) / Surf. Sci. by F F Abraham (1989) -
T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, Bond softening in monolayer graphite formed on transitionmetal carbide surfaces, Phys. Rev. B 42(18), 11469 (1990)
(
10.1103/PhysRevB.42.11469
) / Phys. Rev. B by T Aizawa (1990) -
T. Liang, S. R. Phillpot, and S. B. Sinnott, Parametrization of a reactive many-body potential for Mo-S systems, Phys. Rev. B 79(24), 245110 (2009)
(
10.1103/PhysRevB.79.245110
) / Phys. Rev. B by T Liang (2009) -
J. A. Stewart and D. E. Spearot, Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2), Model. Simul. Mater. Sci. Eng. 21(4), 045003 (2013)
(
10.1088/0965-0393/21/4/045003
) / Model. Simul. Mater. Sci. Eng. by J A Stewart (2013) -
J. D. Gale, Gulp: A computer program for the symmetryadapted simulation of solids, J. Chem. Soc., Faraday Trans. 93(4), 629 (1997) (Code available from https://projects.ivec.org/gulp/ .)
(
10.1039/a606455h
) / J. Chem. Soc., Faraday Trans. by J D Gale (1997) - Lammps, http://www.cs.sandia.gov/~sjplimp/lammps.html (2012)
-
S. Jiménez Sandoval, D. Yang, R. F. Frindt, and J. C. Irwin, Raman study and lattice dynamics of single molecular layers of MoS2, Phys. Rev. B 44(8), 3955 (1991)
(
10.1103/PhysRevB.44.3955
) / Phys. Rev. B by S Jiménez Sandoval (1991) -
E. Dobardžić, I. Milosevic, B. Dakic, and M. Damnjanovic,, Raman and infrared-active modes in MS2 nanotubes (M=Mo,W), Phys. Rev. B 74(3), 033403 (2006)
(
10.1103/PhysRevB.74.033403
) / Phys. Rev. B by E Dobardžić (2006) -
M. Damnjanovic, E. Dobardzic, I. Miloeevic, M. Virsek, and M. Remskar, Phonons in MoS2 and WS2 nanotubes, Mater. Manuf. Process. 23(6), 579 (2008)
(
10.1080/10426910802160361
) / Mater. Manuf. Process. by M Damnjanovic (2008) -
H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, Vibrational properties of graphene and graphene layers, Journal of Raman Spectroscopy 40(12), 1791 (2009)
(
10.1002/jrs.2321
) / Journal of Raman Spectroscopy by H Wang (2009) -
X. Zhang, W. Han, J. Wu, S. Milana, Y. Lu, Q. Li, A. Ferrari, and P. Tan, Raman spectroscopy of shear and layer breathing modes in multilayer MoS2, Phys. Rev. B 87, 115413 (2013)
(
10.1103/PhysRevB.87.115413
) / Phys. Rev. B by X Zhang (2013) -
J. W. Jiang, H. S. Park, and T. Rabczuk, MoS2 nanoresonators: Intrinsically better than graphene? Nanoscale 6(7), 3618 (2014)
(
10.1039/c3nr05991j
) / Nanoscale by J W Jiang (2014) -
F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B 76(6), 064120 (2007)
(
10.1103/PhysRevB.76.064120
) / Phys. Rev. B by F Liu (2007) -
F. Hao, D. Fang, and Z. Xu, Mechanical and thermal transport properties of graphene with defects, Appl. Phys. Lett. 99(4), 041901 (2011)
(
10.1063/1.3615290
) / Appl. Phys. Lett. by F Hao (2011) -
Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, and Y. Chen, Anisotropic mechanical properties of graphene sheets from molecular dynamics, Physica B 405(5), 1301 (2010)
(
10.1016/j.physb.2009.11.071
) / Physica B by Z Ni (2010) -
Y. Gao and P. Hao, Mechanical properties of mono-layer graphene under tensile and compressive loading, Physica E 41(8), 1561 (2009)
(
10.1016/j.physe.2009.04.033
) / Physica E by Y Gao (2009) -
Y. Guo, L. Jiang, and W. Guo, Opening carbon nanotubes into zigzag graphene nanoribbons by energy-optimum oxidation, Phys. Rev. B 82(11), 115440 (2010)
(
10.1103/PhysRevB.82.115440
) / Phys. Rev. B by Y Guo (2010) -
Y. Zheng, N. Wei, Z. Fan, L. Xu, and Z. Huang, Mechanical properties of grafold: A demonstration of strengthened graphene, Nanotechnology 22(40), 405701 (2011)
(
10.1088/0957-4484/22/40/405701
) / Nanotechnology by Y Zheng (2011) -
Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagonheptagon defects in graphene, Nat. Mater. 11(9), 759 (2012)
(
10.1038/nmat3370
) / Nat. Mater. by Y Wei (2012) -
Y. Zhang and C. Pan, Measurements of mechanical properties and number of layers of graphene from nano-indentation, Diamond Related Materials 24, 1 (2012)
(
10.1016/j.diamond.2012.01.033
) / Diamond Related Materials by Y Zhang (2012) -
Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, and J. Li, Mechanical and electronic properties of monolayer MoS2 under elastic strain, Phys. Lett. A 376(12–13), 1166 (2012)
(
10.1016/j.physleta.2012.02.029
) / Phys. Lett. A by Q Yue (2012) -
Y. Huang, J. Wu, and K. C. Hwang, Thickness of graphene and single-wall carbon nanotubes, Phys. Rev. B 74(24), 245413 (2006)
(
10.1103/PhysRevB.74.245413
) / Phys. Rev. B by Y Huang (2006) -
L. Shen, H. S. Shen, and C. L. Zhang, Temperature-dependent elastic properties of single layer graphene sheets, Mater. Des. 31(9), 4445 (2010)
(
10.1016/j.matdes.2010.04.016
) / Mater. Des. by L Shen (2010) - T. Han, P. He, Y. Luo, and X. Zhang, Research progress in the mechanical properties of graphene, Advances in Mechanics 41(3), 279 (2011) / Advances in Mechanics by T Han (2011)
-
L. Xu, N. Wei, Y. Zheng, Z. Fan, H. Q. Wang, and J. C. Zheng, Graphene-nanotube 3d networks: Intriguing thermal and mechanical properties, J. Mater. Chem. 22(4), 1435 (2011)
(
10.1039/C1JM13799A
) / J. Mater. Chem. by L Xu (2011) -
J. W. Jiang, J. S. Wang, and B. Li, Elastic and nonlinear stiffness of graphene: A simple approach, Phys. Rev. B 81(7), 073405 (2010)
(
10.1103/PhysRevB.81.073405
) / Phys. Rev. B by J W Jiang (2010) -
S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano 5(12), 9703 (2011)
(
10.1021/nn203879f
) / ACS Nano by S Bertolazzi (2011) -
R. C. Cooper, C. Lee, C. A. Marianetti, X. Wei, J. Hone, and J. W. Kysar, Erratum: Nonlinear elastic behavior of two-dimensional molybdenum disulfide [Phys. Rev. B 87, 035423 (2013)], Phys. Rev. B 87(7), 079901 (2013)
(
10.1103/PhysRevB.87.079901
) / Phys. Rev. B by R C Cooper (2013) - K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures arXiv: 1407.2669 (2014) / Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures arXiv: 1407.2669 by K Liu (2014)
-
A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agrait, and G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nano sheets, Adv. Mater. 24(6), 772 (2012)
(
10.1002/adma.201103965
) / Adv. Mater. by A Castellanos-Gomez (2012) -
E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Nonlinear elasticity of monolayer graphene, Phys. Rev. Lett. 102(23), 235502 (2009)
(
10.1103/PhysRevLett.102.235502
) / Phys. Rev. Lett. by E Cadelano (2009) -
C. D. Reddy, S. Rajendran, and K. M. Liew, Equilibrium configuration and continuum elastic properties of finite sized graphene, Nanotechnology 17(3), 864 (2006)
(
10.1088/0957-4484/17/3/042
) / Nanotechnology by C D Reddy (2006) -
H. Zhao, K. Min, and N. R. Aluru, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension, Nano Lett. 9(8), 3012 (2009)
(
10.1021/nl901448z
) / Nano Lett. by H Zhao (2009) -
P. Tao, H. Guo, T. Yang, and Z. Zhang, Strain-induced magnetism in MoS2 monolayer with defects, J. Appl. Phys. 115(5), 054305 (2014)
(
10.1063/1.4864015
) / J. Appl. Phys. by P Tao (2014) -
Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2, Nat. Nanotechnol. 9(5), 391 (2014)
(
10.1038/nnano.2014.64
) / Nat. Nanotechnol. by Y C Lin (2014) -
J. W. Jiang, Phonon bandgap engineering of strained monolayer MoS2, Nanoscale 6(14), 8326 (2014)
(
10.1039/c4nr00279b
) / Nanoscale by J W Jiang (2014) -
M. Kan, J. Y. Wang, X. W. Li, S. H. Zhang, Y. W. Li, Y. Kawazoe, Q. Sun, and P. Jena, Structures and phase transition of a MoS2 monolayer, J. Phys. Chem. C 118(3), 1515 (2014)
(
10.1021/jp4076355
) / J. Phys. Chem. C by M Kan (2014) -
K. Q. Dang, J. P. Simpson, and D. E. Spearot, Phase transformation in monolayer molybdenum disulphide (MoS2) under tension predicted by molecular dynamics simulations, Scr. Mater. 76, 41 (2014)
(
10.1016/j.scriptamat.2013.12.011
) / Scr. Mater. by K Q Dang (2014) -
Y. Wei, B. Wang, J. Wu, R. Yang, and M. L. Dunn, Bending rigidity and gaussian bending stiffness of single-layered graphene, Nano Lett. 13(1), 26 (2013)
(
10.1021/nl303168w
) / Nano Lett. by Y Wei (2013) -
X. Zhou, J. J. Zhou, and Z. C. Ou-Yang, Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Phys. Rev. B 62(20), 13692 (2000)
(
10.1103/PhysRevB.62.13692
) / Phys. Rev. B by X Zhou (2000) -
T. Ma, B. Li, and T. Chang, Chirality- and curvature-dependent bending stiffness of single layer graphene, Appl. Phys. Lett. 99(20), 201901 (2011)
(
10.1063/1.3660739
) / Appl. Phys. Lett. by T Ma (2011) -
Y. Shen and H. Wu, Interlayer shear effect on multilayer graphene subjected to bending, Appl. Phys. Lett. 100(10), 101909 (2012)
(
10.1063/1.3693390
) / Appl. Phys. Lett. by Y Shen (2012) -
X. Shi, B. Peng, N. M. Pugno, and H. Gao, Stretch-induced softening of bending rigidity in graphene, Appl. Phys. Lett. 100(19), 191913 (2012)
(
10.1063/1.4716024
) / Appl. Phys. Lett. by X Shi (2012) -
M. Arroyo and T. Belytschko, Finite crystal elasticity of carbon nanotubes based on the exponential cauchy-born rule, Phys. Rev. B 69(11), 115415 (2004)
(
10.1103/PhysRevB.69.115415
) / Phys. Rev. B by M Arroyo (2004) -
Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, Super-elastic graphene ripples for flexible strain sensors, ACS Nano 5(5), 3645 (2011)
(
10.1021/nn103523t
) / ACS Nano by Y Wang (2011) -
J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, and J. M. Zuo, Free folding of suspended graphene sheets by random mechanical stimulation, Phys. Rev. Lett. 104(16), 166805 (2010)
(
10.1103/PhysRevLett.104.166805
) / Phys. Rev. Lett. by J Zhang (2010) -
J. X. Shi, Q. Q. Ni, X. W. Lei, and T. Natsuki, Nonlocal elasticity theory for the buckling of double-layer graphene nanoribbons based on a continuum model, Comput. Mater. Sci. 50(11), 3085 (2011)
(
10.1016/j.commatsci.2011.05.031
) / Comput. Mater. Sci. by J X Shi (2011) -
C. Wang, L. Lan, and H. Tan, The physics of wrinkling in graphene membranes under local tension, Phys. Chem. Chem. Phys. 15(8), 2764 (2013)
(
10.1039/c2cp44033d
) / Phys. Chem. Chem. Phys. by C Wang (2013) - S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd Ed., New York: McGraw-Hill, 1987 / Theory of Plates and Shells by S Timoshenko (1987)
-
J. W. Jiang, The buckling of single-layer MoS2 under uniaxial compression, Nanotechnology 25(35), 355402 (2014)
(
10.1088/0957-4484/25/35/355402
) / Nanotechnology by J W Jiang (2014) -
M. Zhou, Y. Zhai, and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem. 81(14), 5603 (2009)
(
10.1021/ac900136z
) / Anal. Chem. by M Zhou (2009) -
Y. Xu, C. Chen, V. V. Deshpande, F. A. DiRenno, A. Gondarenko, D. B. Heinz, S. Liu, P. Kim, and J. Hone, Radio frequency electrical transduction of graphene mechanical resonators, Appl. Phys. Lett. 97(24), 243111 (2010)
(
10.1063/1.3528341
) / Appl. Phys. Lett. by Y Xu (2010) -
X. Q. He, S. Kitipornchai, and K. M. Liew, Resonance analysis of multi-layered graphene sheets used as nanoscale resonators, Nanotechnology 16(10), 2086 (2005)
(
10.1088/0957-4484/16/10/018
) / Nanotechnology by X Q He (2005) -
Y. Liu, Z. Xu, and Q. Zheng, The interlayer shear effect on graphene multilayer resonators, J. Mech. Phys. Solids 59(8), 1613 (2011)
(
10.1016/j.jmps.2011.04.014
) / J. Mech. Phys. Solids by Y Liu (2011) -
J. Wang, X. He, S. Kitipornchai, and H. Zhang, Geometrical nonlinear free vibration of multi-layered graphene sheets, J. Phys. D: Appl. Phys. 44(13), 135401 (2011)
(
10.1088/0022-3727/44/13/135401
) / J. Phys. D: Appl. Phys. by J Wang (2011) -
Y. Xu, S. Yan, Z. Jin, and Y. Wang, Quantum-squeezing effects of strained multilayer graphene nems, Nanoscale Res. Lett. 6(1), 355 (2011)
(
10.1186/1556-276X-6-355
) / Nanoscale Res. Lett. by Y Xu (2011) -
F. Gu, J. H. Zhang, L. J. Yang, and B. Gu, Molecular dynamics simulation of resonance properties of strain graphene nanoribbons, Acta Phys. Sin. 60(5), 056103 (2011)
(
10.7498/aps.60.056103
) / Acta Phys. Sin. by F Gu (2011) -
Z. B. Shen, H. L. Tang, D. K. Li, and G. J. Tang, Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory, Comput. Mater. Sci. 61, 200 (2012)
(
10.1016/j.commatsci.2012.04.003
) / Comput. Mater. Sci. by Z B Shen (2012) -
S. M. Zhou, L. P. Sheng, and Z. B. Shen, Transverse vibration of circular graphene sheet-based mass sensor via nonlocal Kirchhoff plate theory, Comput. Mater. Sci. 86, 73 (2014)
(
10.1016/j.commatsci.2014.01.031
) / Comput. Mater. Sci. by S M Zhou (2014) -
K. L. Ekinci and M. L. Roukes, Nanoelectromechanical systems, Rev. Sci. Instrum. 76(6), 061101 (2005)
(
10.1063/1.1927327
) / Rev. Sci. Instrum. by K L Ekinci (2005) -
A. M. Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Large-scale arrays of singlelayer graphene resonators, Nano Lett. 10(12), 4869 (2010)
(
10.1021/nl102713c
) / Nano Lett. by A M Zande (2010) -
C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Performance of monolayer graphene nanomechanical resonators with electrical read-out, Nat. Nanotechnol. 4(12), 861 (2009)
(
10.1038/nnano.2009.267
) / Nat. Nanotechnol. by C Chen (2009) -
J. W. Jiang, B. S. Wang, H. S. Park, and T. Rabczuk, Adsorbate migration effects on continuous and discontinuous temperature-dependent transitions in the quality factors of graphene nanoresonators, Nanotechnology 25(2), 025501 (2014)
(
10.1088/0957-4484/25/2/025501
) / Nanotechnology by J W Jiang (2014) - C. Edblom and A. Isacsson, Diffusion-induced dissipation and mode coupling in nanomechanical resonators arXiv: 1406.1365v1 (2014) / Diffusion-induced dissipation and mode coupling in nanomechanical resonators arXiv: 1406.1365v1 by C Edblom (2014)
-
A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene, Nat. Nanotechnol. 6(6), 339 (2011)
(
10.1038/nnano.2011.71
) / Nat. Nanotechnol. by A Eichler (2011) -
A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, Singlelayer MoS2 mechanical resonators, Adv. Mater. 25(46), 6719 (2013)
(
10.1002/adma.201303569
) / Adv. Mater. by A Castellanos-Gomez (2013) -
J. Lee, Z. Wang, K. He, J. Shan, and P. X. L. Feng, High frequency MoS2 nanomechanical resonators, ACS Nano 7(7), 6086 (2013)
(
10.1021/nn4018872
) / ACS Nano by J Lee (2013) -
A. A. Balandin, Low-frequency 1/f noise in graphene devices, Nat. Nanotechnol. 8(8), 549 (2013)
(
10.1038/nnano.2013.144
) / Nat. Nanotechnol. by A A Balandin (2013) -
Y. M. Lin and P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices, Nano Lett. 8(8), 2119 (2008)
(
10.1021/nl080241l
) / Nano Lett. by Y M Lin (2008) -
A. N. Pal and A. Ghosh, Resistance noise in electrically biased bilayer graphene, Phys. Rev. Lett. 102(12), 126805 (2009)
(
10.1103/PhysRevLett.102.126805
) / Phys. Rev. Lett. by A N Pal (2009) -
Z. Cheng, Q. Li, Z. Li, Q. Zhou, and Y. Fang, Suspended graphene sensors with improved signal and reduced noise, Nano Lett. 10(5), 1864 (2010)
(
10.1021/nl100633g
) / Nano Lett. by Z Cheng (2010) - S. Rumyantsev, G. Liu, W. Stillman, M. Shur, and A. A. Balandin, Electrical and noise characteristics of graphene fieldeffect transistors: Ambient effects, noise sources and physical mechanisms, J. Phys.: Condens. Matter 22(39), 395302 (2010) / J. Phys.: Condens. Matter by S Rumyantsev (2010)
-
G. Liu, S. Rumyantsev, M. Shur, and A. A. Balandin, Graphene thickness-graded transistors with reduced electronic noise, Appl. Phys. Lett. 100(3), 033103 (2012)
(
10.1063/1.3676277
) / Appl. Phys. Lett. by G Liu (2012) -
M. Z. Hossain, S. L. Roumiantsev, M. Shur, and A. A. Balandin, Reduction of 1/f noise in graphene after electronbeam irradiation, Appl. Phys. Lett. 102(15), 153512 (2013)
(
10.1063/1.4802759
) / Appl. Phys. Lett. by M Z Hossain (2013) -
K. Saito, J. Nakamura, and A. Natori, Ballistic thermal conductance of a graphene sheet, Phys. Rev. B 76(11), 115409 (2007)
(
10.1103/PhysRevB.76.115409
) / Phys. Rev. B by K Saito (2007) -
S. Yien, V. Tayari, J. O. Island, J. M. Porter, and A. R. Champagne, Electronic thermal conductivity measurements in intrinsic graphene, Phys. Rev. B 87(24), 241411 (2013)
(
10.1103/PhysRevB.87.241411
) / Phys. Rev. B by S Yien (2013) -
J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
(
10.1140/epjb/e2008-00195-8
) / Eur. Phys. J. B by J S Wang (2008) -
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium greens function method for quantum thermal transport, Front. Phys. 9(6), 673 (2013)
(
10.1007/s11467-013-0340-x
) / Front. Phys. by J S Wang (2013) -
S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat. Mater. 11(3), 203 (2012)
(
10.1038/nmat3207
) / Nat. Mater. by S Chen (2012) -
Z. Guo, D. Zhang, and X. G. Gong, Thermal conductivity of graphene nanoribbons, Appl. Phys. Lett. 95(16), 163103 (2009)
(
10.1063/1.3246155
) / Appl. Phys. Lett. by Z Guo (2009) -
Y. Xu, X. Chen, B. L. Gu, and W. Duan, Intrinsic anisotropy of thermal conductance in graphene nanoribbons, Appl. Phys. Lett. 95(23), 233116 (2009)
(
10.1063/1.3272678
) / Appl. Phys. Lett. by Y Xu (2009) -
S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments, ACS Nano 5(1), 321 (2011)
(
10.1021/nn102915x
) / ACS Nano by S Chen (2011) -
N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology 22(10), 105705 (2011)
(
10.1088/0957-4484/22/10/105705
) / Nanotechnology by N Wei (2011) -
Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, In-plane lattice thermal conductivities of multilayer graphene films, Carbon 49(8), 2653 (2011)
(
10.1016/j.carbon.2011.02.051
) / Carbon by Z Wei (2011) - Z. X. Xie, K. Q. Chen, and W. Duan, Thermal transport by phonons in zigzag graphene nanoribbons with structural defects, J. Phys.: Condens. Matter 23(31), 315302 (2011) / J. Phys.: Condens. Matter by Z X Xie (2011)
-
X. Zhai and G. Jin, Stretching-enhanced ballistic thermal conductance in graphene nanoribbons, Europhys. Lett. 96(1), 16002 (2011)
(
10.1209/0295-5075/96/16002
) / Europhys. Lett. by X Zhai (2011) -
X. F. Peng, X. J. Wang, Z. Q. Gong, and K. Q. Chen, Ballistic thermal conductance in graphene nanoribbon with double-cavity structure, Appl. Phys. Lett. 99(23), 233105 (2011)
(
10.1063/1.3666221
) / Appl. Phys. Lett. by X F Peng (2011) -
F. Ma, H. B. Zheng, Y. J. Sun, D. Yang, K. W. Xu, and P. K. Chu, Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene, Appl. Phys. Lett. 101(11), 111904 (2012)
(
10.1063/1.4752010
) / Appl. Phys. Lett. by F Ma (2012) -
Z. X. Guo, J. W. Ding, and X. G. Gong, Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons, Phys. Rev. B 85(23), 235429 (2012)
(
10.1103/PhysRevB.85.235429
) / Phys. Rev. B by Z X Guo (2012) -
N. Mingo and D. A. Broido, Carbon nanotube ballistic thermal conductance and its limits, Phys. Rev. Lett. 95(9), 096105 (2005)
(
10.1103/PhysRevLett.95.096105
) / Phys. Rev. Lett. by N Mingo (2005) -
N. Mingo and D. A. Broido, Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”, Nano Lett. 5(7), 1221 (2005)
(
10.1021/nl050714d
) / Nano Lett. by N Mingo (2005) -
D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering, Phys. Rev. B 79(15), 155413 (2009)
(
10.1103/PhysRevB.79.155413
) / Phys. Rev. B by D L Nika (2009) -
D. L. Nika, A. S. Askerov, and A. A. Balandin, Anomalous size dependence of the thermal conductivity of graphene ribbons, Nano Lett. 12(6), 3238 (2012)
(
10.1021/nl301230g
) / Nano Lett. by D L Nika (2012) -
X. Xu, L. F. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. Tinh Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. Li, and B. Özyilmaz, Lengthdependent thermal conductivity in suspended single-layer graphene, Nat. Commun. 5, 3689 (2014)
(
10.1038/ncomms4689
) / Nat. Commun. by X Xu (2014) -
D. L. Nika, E. P. Pokatilov, and A. A. Balandin, Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches, Phys. Status Solidi B 248(11), 2609 (2011)
(
10.1002/pssb.201100186
) / Phys. Status Solidi B by D L Nika (2011) - J. Wang, X. M. Wang, Y. F. Chen, and J. S. Wang, Dimensional crossover of thermal conductance in graphene nanoribbons: A first-principles approach, J. Phys.: Condens. Matter 24(29), 295403 (2012) / J. Phys.: Condens. Matter by J Wang (2012)
- D. L. Nika and A. A. Balandin, Two-dimensional phonon transport in graphene, J. Phys.: Condens. Matter 24(23), 233203 (2012) / J. Phys.: Condens. Matter by D L Nika (2012)
-
N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)
(
10.1103/RevModPhys.84.1045
) / Rev. Mod. Phys. by N Li (2012) -
J. W. Jiang, J. Lan, J. S. Wang, and B. Li, Iso-topic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism, J. Appl. Phys. 107(5), 054314 (2010)
(
10.1063/1.3329541
) / J. Appl. Phys. by J W Jiang (2010) -
W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett. 10(5), 1645 (2010)
(
10.1021/nl9041966
) / Nano Lett. by W Cai (2010) -
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
(
10.1021/nl0731872
) / Nano Lett. by A A Balandin (2008) -
S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett. 92(15), 151911 (2008)
(
10.1063/1.2907977
) / Appl. Phys. Lett. by S Ghosh (2008) -
L. Lindsay, D. A. Broido, and N. Mingo, Flexural phonons and thermal transport in multilayer graphene and graphite, Phys. Rev. B 83(23), 235428 (2011)
(
10.1103/PhysRevB.83.235428
) / Phys. Rev. B by L Lindsay (2011) -
Z. Aksamija and I. Knezevic, Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering, Appl. Phys. Lett. 98(14), 141919 (2011)
(
10.1063/1.3569721
) / Appl. Phys. Lett. by Z Aksamija (2011) -
L. Chen and S. Kumar, Thermal transport in graphene supported on copper, J. Appl. Phys. 112(4), 043502 (2012)
(
10.1063/1.4740071
) / J. Appl. Phys. by L Chen (2012) -
Z. Wei, J. Yang, K. Bi, and Y. Chen, Mode dependent lattice thermal conductivity of single layer graphene, J. Appl. Phys. 116(15), 153503 (2014)
(
10.1063/1.4898338
) / J. Appl. Phys. by Z Wei (2014) -
S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9(7), 555 (2010)
(
10.1038/nmat2753
) / Nat. Mater. by S Ghosh (2010) -
D. Singh, J. Y. Murthy, and T. S. Fisher, Mechanism of thermal conductivity reduction in few-layer graphene, J. Appl. Phys. 110(4), 044317 (2011)
(
10.1063/1.3622300
) / J. Appl. Phys. by D Singh (2011) -
G. Zhang and H. Zhang, Thermal conduction and rectification in few-layer graphene y junctions, Nanoscale 3(11), 4604 (2011)
(
10.1039/c1nr10945f
) / Nanoscale by G Zhang (2011) -
W.R. Zhong, M.P. Zhang, B.Q. Ai, and D.Q. Zheng, Chirality and thickness-dependent thermal conductivity of fewlayer graphene: A molecular dynamics study, Appl. Phys. Lett. 98(11), 113107 (2011)
(
10.1063/1.3567415
) / Appl. Phys. Lett. by WR Zhong (2011) -
W. R. Zhong, W. H. Huang, X. R. Deng, and B. Q. Ai, Thermal rectification in thickness-asymmetric graphene nanoribbons, Appl. Phys. Lett. 99(19), 193104 (2011)
(
10.1063/1.3659474
) / Appl. Phys. Lett. by W R Zhong (2011) -
A. Rajabpour and S. M. Vaez Allaei, Tuning thermal conductivity of bilayer graphene by inter-layer sp3 bonding: A molecular dynamics study, Appl. Phys. Lett. 101(5), 053115 (2012)
(
10.1063/1.4740259
) / Appl. Phys. Lett. by A Rajabpour (2012) -
H. Y. Cao, Z. X. Guo, H. Xiang, and X. G. Gong, Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons, Phys. Lett. A 376(4), 525 (2012)
(
10.1016/j.physleta.2011.11.016
) / Phys. Lett. A by H Y Cao (2012) -
T. Sun, J. Wang, and W. Kang, Van der waals interactiontuned heat transfer in nanostructures, Nanoscale 5(1), 128 (2012)
(
10.1039/C2NR32481D
) / Nanoscale by T Sun (2012) -
S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, Temperature dependent raman studies and thermal conductivity of few layer MoS2, J. Phys. Chem. C 117(17), 9042 (2013)
(
10.1021/jp402509w
) / J. Phys. Chem. C by S Sahoo (2013) -
V. Varshney, S. S. Patnaik, C. Muratore, A. K. Roy, A. A. Voevodin, and B. L. Farmer, Md simulations of molybdenum disulphide (MoS2): Force-field parameterization and thermal transport behavior, Comput. Mater. Sci. 48(1), 101 (2010)
(
10.1016/j.commatsci.2009.12.009
) / Comput. Mater. Sci. by V Varshney (2010) -
W. Huang, H. Da, and G. Liang, Thermoelectric performance of MX2 (M=Mo, W; X=S, Se) monolayers, J. Appl. Phys. 113(10), 104304 (2013)
(
10.1063/1.4794363
) / J. Appl. Phys. by W Huang (2013) -
J. W. Jiang, X. Y. Zhuang, and T. Rabczuk, Orientation dependent thermal conductance in single-layer MoS2, Scientific Reports 3, 2209 (2013)
(
10.1038/srep02209
) / Scientific Reports by J W Jiang (2013) -
J. W. Jiang, J. S. Wang, and B. Li, Thermal conductance of graphene and dimerite, Phys. Rev. B 79(20), 205418 (2009)
(
10.1103/PhysRevB.79.205418
) / Phys. Rev. B by J W Jiang (2009) -
X. Liu, G. Zhang, Q. X. Pei, and Y. W. Zhang, Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons, Appl. Phys. Lett. 103(13), 133113 (2013)
(
10.1063/1.4823509
) / Appl. Phys. Lett. by X Liu (2013) -
Z. Yan, G. Liu, J. M. Khan, and A. A. Balandin, Graphene quilts for thermal management of high-power gan transistors, Nat. Commun. 3, 827 (2012)
(
10.1038/ncomms1828
) / Nat. Commun. by Z Yan (2012) -
V. Goyal and A. A. Balandin, Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials, Appl. Phys. Lett. 100(7), 073113 (2012)
(
10.1063/1.3687173
) / Appl. Phys. Lett. by V Goyal (2012) -
K. M. F. Shahil and A. A. Balandin, Graphenemultilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett. 12(2), 861 (2012)
(
10.1021/nl203906r
) / Nano Lett. by K M F Shahil (2012) -
P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources 248(15), 37 (2014)
(
10.1016/j.jpowsour.2013.08.135
) / J. Power Sources by P Goli (2014) -
H. Malekpour, K. H. Chang, J. C. Chen, C. Y. Lu, D. L. Nika, K. S. Novoselov, and A. A. Balandin, Thermal conductivity of graphene laminate, Nano Lett. 14(9), 5155 (2014)
(
10.1021/nl501996v
) / Nano Lett. by H Malekpour (2014) -
P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Fabrication of exfoliated graphene-based polypropy-lene nanocomposites with enhanced mechanical and thermal properties, Polymer 52(18), 4001 (2011)
(
10.1016/j.polymer.2011.06.045
) / Polymer by P Song (2011) -
W. Yu, H. Xie, and D. Bao, Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets, Nanotechnology 21(5), 055705 (2010)
(
10.1088/0957-4484/21/5/055705
) / Nanotechnology by W Yu (2010) -
W. Yu, H. Xie, and W. Chen, Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets, J. Appl. Phys. 107(9), 094317 (2010)
(
10.1063/1.3372733
) / J. Appl. Phys. by W Yu (2010) -
W. Yu, H. Xie, X. Wang, and X. Wang, Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Phys. Lett. A 375(10), 1323 (2011)
(
10.1016/j.physleta.2011.01.040
) / Phys. Lett. A by W Yu (2011) - Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, et al., Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113, 131030 (2009) / J. Phys. Chem. C by Y Wang (2009)
-
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
(
10.1038/nature04233
) / Nature by K S Novoselov (2005) -
S. Y. Zhou, G. H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D.H. Lee, S. G. Louie, and A. Lanzara, First direct observation of Dirac fermions in graphite, Nat. Phys. 2(9), 595 (2006)
(
10.1038/nphys393
) / Nat. Phys. by S Y Zhou (2006) -
B. Partoens and F. M. Peeters, Normal and dirac fermions in graphene multilayers: Tight-binding description of the electronic structure, Phys. Rev. B 75(19), 193402 (2007)
(
10.1103/PhysRevB.75.193402
) / Phys. Rev. B by B Partoens (2007) -
J. Hass, F. Varchon, J. E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. First, L. Magaud, and E. Conrad, Why multi-layer graphene on 4h-sic 0001̄ behaves like a single sheet of graphene, Phys. Rev. Lett. 100(12), 125504 (2008)
(
10.1103/PhysRevLett.100.125504
) / Phys. Rev. Lett. by J Hass (2008) -
S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, Tight-binding description of graphene, Phys. Rev. B 66(3), 035412 (2002)
(
10.1103/PhysRevB.66.035412
) / Phys. Rev. B by S Reich (2002) -
V. Pereira, A. Castro Neto, and N. Peres, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B 80(4), 045401 (2009)
(
10.1103/PhysRevB.80.045401
) / Phys. Rev. B by V Pereira (2009) -
F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy gaps and a zero-field quantum hall effect in graphene by strain engineering, Nat. Phys. 6(1), 30 (2010)
(
10.1038/nphys1420
) / Nat. Phys. by F Guinea (2010) -
K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54(24), 17954 (1996)
(
10.1103/PhysRevB.54.17954
) / Phys. Rev. B by K Nakada (1996) -
K. K. Kam and B. A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group vi transition metal dichalcogenides, J. Phys. Chem. 86(4), 463 (1982)
(
10.1021/j100393a010
) / J. Phys. Chem. by K K Kam (1982) -
T. Eknapakul, P. D. C. King, M. Asakawa, P. Buaphet, R. H. He, S. K. Mo, H. Takagi, K. M. Shen, F. Baumberger, T. Sasagawa, S. Jungthawan, and W. Meevasana, Electronic structure of a quasi-freestanding MoS2 monolayer, Nano Lett. 14(3), 1312 (2014)
(
10.1021/nl4042824
) / Nano Lett. by T Eknapakul (2014) -
Y. Li, Z. Zhou, S. Zhang, and Z. Chen, MoS2 nanorib-bons: High stability and unusual electronic and magnetic properties, J. Am. Chem. Soc. 130(49), 16739 (2008)
(
10.1021/ja805545x
) / J. Am. Chem. Soc. by Y Li (2008) -
P. Lu, X. Wu, W. Guo, and X. C. Zeng, Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes, Phys. Chem. Chem. Phys. 14(37), 13035 (2012)
(
10.1039/c2cp42181j
) / Phys. Chem. Chem. Phys. by P Lu (2012) -
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
(
10.1038/nnano.2010.279
) / Nat. Nanotechnol. by B Radisavljevic (2011) -
V. K. Sangwan, H. N. Arnold, D. Jariwala, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Low-frequency electronic noise in single-layer MoS2 transistors, Nano Lett. 13(9), 4351 (2013)
(
10.1021/nl402150r
) / Nano Lett. by V K Sangwan (2013) -
E. Scalise, M. Houssa, G. Pourtois, V. Afanasev, and A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2, Nano Research 5(1), 43 (2012)
(
10.1007/s12274-011-0183-0
) / Nano Research by E Scalise (2012) -
H. J. Conley, B. Wang, J. I. Ziegler, R. F. Jr Haglund, S. T. Pantelides, and K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13(8), 3626 (2013)
(
10.1021/nl4014748
) / Nano Lett. by H J Conley (2013) -
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
(
10.1103/PhysRevLett.105.136805
) / Phys. Rev. Lett. by K F Mak (2010) -
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)
(
10.1126/science.1156965
) / Science by R R Nair (2008) -
F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, Ultrafast graphene photodetector, Nat. Nanotechnol. 4(12), 839 (2009)
(
10.1038/nnano.2009.292
) / Nat. Nanotechnol. by F Xia (2009) -
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Raden-ovic, and A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol. 8(7), 497 (2013)
(
10.1038/nnano.2013.100
) / Nat. Nanotechnol. by O Lopez-Sanchez (2013) - C. H. Lui, A. J. Frenzel, D. V. Pilon, Y. H. Lee, X. Ling, G. M. Akselrod, et al., Trion induced negative photoconductivity in monolayer MoS2 arXiv: 1406.5100 (2014) / Trion induced negative photoconductivity in monolayer MoS2 arXiv: 1406.5100 by C H Lui (2014)
-
K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, S. Kaushal, and A. Ghosh, Optically active heterostructures of graphene and ultrathin MoS2, Solid State Commun. 175–176, 35 (2013)
(
10.1016/j.ssc.2013.09.021
) / Solid State Commun. by K Roy (2013) -
G. Algara-Siller, S. Kurasch, M. Sedighi, O. Lehtinen, and U. Kaiser, The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene, Appl. Phys. Lett. 103(20), 203107 (2013)
(
10.1063/1.4830036
) / Appl. Phys. Lett. by G Algara-Siller (2013) -
N. Myoung, K. Seo, S. J. Lee, and G. Ihm, Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures, ACS Nano 7(8), 7021 (2013)
(
10.1021/nn402919d
) / ACS Nano by N Myoung (2013) - S. Bertolazzi, D. Krasnozhon, and A. Kis, Nonvolatile memory cells based on MoS2 /graphene heterostructures, Nano Lett. 7(4), 3246 (2013) / Nano Lett. by S Bertolazzi (2013)
-
S. Larentis, J. R. Tolsma, B. Fallahazad, D. C. Dillen, K. Kim, A. H. MacDonald, and E. Tutuc, Band offset and negative compressibility in graphene-MoS2 heterostructures, Nano Lett. 14(4), 2039 (2014)
(
10.1021/nl500212s
) / Nano Lett. by S Larentis (2014) -
W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, et al., Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Scientific Reports 4, 3826 (2014)
(
10.1038/srep03826
) / Scientific Reports by W Zhang (2014) -
F. Xia, X. Hu, Y. Sun, W. Luo, and Y. Huang, Layer-bylayer assembled MoO2 graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries, Nanoscale 4(15), 4707 (2012)
(
10.1039/c2nr30742a
) / Nanoscale by F Xia (2012) -
W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, et al., Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Scientific Reports 4, 3826 (2013)
(
10.1038/srep03826
) / Scientific Reports by W Zhang (2013) -
H. Xu, D. He, M. Fu, W. Wang, H. Wu, and Y. Wang, Optical identification of MoS2/graphene heterostructure on SiO2/Si substrate, Opt. Express 22(13), 15969 (2014)
(
10.1364/OE.22.015969
) / Opt. Express by H Xu (2014) -
L. F. Wang, T. B. Ma, Y. Z. Hu, Q. Zheng, H. Wang, and J. Luo, Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: A first-principles study, Nanotechnology 25(38), 385701 (2014)
(
10.1088/0957-4484/25/38/385701
) / Nanotechnology by L F Wang (2014) -
Y. Ma, Y. Dai, M. Guo, C. Niu, and B. Huang, Graphene adhesion on MoS2 monolayer: An ab initio study, Nanoscale 3(9), 3883 (2011)
(
10.1039/c1nr10577a
) / Nanoscale by Y Ma (2011) -
L. Yu, Y. H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics, Nano Lett. 14(6), 3055 (2014)
(
10.1021/nl404795z
) / Nano Lett. by L Yu (2014) - R. H. Miwa and W. L. Scopel, Lithium incorporation at the MoS2/graphene interface: An ab initio investigation, J. Phys.: Condens. Matter 25(44), 445301 (2013) / J. Phys.: Condens. Matter by R H Miwa (2013)
-
J. W. Jiang and H. S. Park, Mechanical properties of MoS2/graphene heterostructures, Appl. Phys. Lett. 105(3), 033108 (2014)
(
10.1063/1.4891342
) / Appl. Phys. Lett. by J W Jiang (2014) -
K. K. Karkkainen, A. H. Sihvola, and K. I. Nikoskinen, Effective permittivity of mixtures: Numerical validation by the FDTD method, IEEE Trans. Geosci. Rem. Sens. 38(3), 1303 (2000)
(
10.1109/36.843023
) / IEEE Trans. Geosci. Rem. Sens. by K K Karkkainen (2000)
Dates
Type | When |
---|---|
Created | 10 years, 6 months ago (Feb. 5, 2015, 12:09 p.m.) |
Deposited | 3 months, 1 week ago (May 18, 2025, 7:16 a.m.) |
Indexed | 4 days, 16 hours ago (Aug. 23, 2025, 9:51 p.m.) |
Issued | 10 years, 6 months ago (Feb. 6, 2015) |
Published | 10 years, 6 months ago (Feb. 6, 2015) |
Published Online | 10 years, 6 months ago (Feb. 6, 2015) |
Published Print | 10 years, 2 months ago (June 1, 2015) |
@article{Jiang_2015, title={Graphene versus MoS2: A short review}, volume={10}, ISSN={2095-0470}, url={http://dx.doi.org/10.1007/s11467-015-0459-z}, DOI={10.1007/s11467-015-0459-z}, number={3}, journal={Frontiers of Physics}, publisher={China Engineering Science Press Co. Ltd.}, author={Jiang, Jin-Wu}, year={2015}, month=feb, pages={287–302} }