Crossref journal-article
Springer Science and Business Media LLC
Science China Technological Sciences (297)
Bibliography

Lü, P., Feng, Y., Zhang, X., Li, Y., & Feng, W. (2010). Recent progresses in application of functionalized graphene sheets. Science China Technological Sciences, 53(9), 2311–2319.

Authors 5
  1. Peng Lü (first)
  2. YiYu Feng (additional)
  3. XueQuan Zhang (additional)
  4. Yu Li (additional)
  5. Wei Feng (additional)
References 70 Referenced 25
  1. Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183–191 (10.1038/nmat1849) / Nat Mater by A. K. Geim (2007)
  2. Geim A K. Graphene: Status and prospects. Science, 2009, 324: 1530–1534 (10.1126/science.1158877) / Science by A. K. Geim (2009)
  3. Rao C N R, Biswas K, Subrahmanyam K S, et al. Graphene, the new nanocarbon. J Mater Chem, 2009, 19: 2457–2469 (10.1039/b815239j) / J Mater Chem by C. N. R. Rao (2009)
  4. Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109–162 (10.1103/RevModPhys.81.109) / Rev Mod Phys by A. H. Neto (2009)
  5. Lu X, Yu M, Huang H, et al. Tailoring graphite with the goal of achieving single sheets. Nanotechnol, 1999, 10: 269–272 (10.1088/0957-4484/10/3/308) / Nanotechnol by X. Lu (1999)
  6. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669 (10.1126/science.1102896) / Science by K. S. Novoselov (2004)
  7. Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Lett, 2008, 8: 3498–3502 (10.1021/nl802558y) / Nano Lett by M. D. Stoller (2008)
  8. Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321: 385–388 (10.1126/science.1157996) / Science by C. G. Lee (2008)
  9. Steurer P, Wissert R, Thomann R, et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun, 2009, 30: 316–327 (10.1002/marc.200800754) / Macromol Rapid Commun by P. Steurer (2009)
  10. Novoselov K S, Morozov S V, Mohinddin T M G, et al. Electronic properties of graphene. Phys Stat Sol(b), 2007, 244: 4106–4111 (10.1002/pssb.200776208) / Phys Stat Sol(b) by K. S. Novoselov (2007)
  11. Igor A L, Yanchuk, Yakov K. Dirac and normal fermions in graphite and graphene: Implications of the quantum hall effect. Phys Rev Lett, 2006, 97: 256801 (10.1103/PhysRevLett.97.256801) / Phys Rev Lett by A. L. Igor (2006)
  12. Burghard M, Klauk H, Kern K. Carbon-based field-effect transistors for nanoelectronics. Adv Mater, 2009, 21: 2586–2600 (10.1002/adma.200803582) / Adv Mater by M. Burghard (2009)
  13. Alwarappan S, Erdem A, Liu C, et al. Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C, 2009, 113: 8853–8857 (10.1021/jp9010313) / J Phys Chem C by S. Alwarappan (2009)
  14. Guo P, Song H, Chen X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun, 2009, 11: 1320–1324 (10.1016/j.elecom.2009.04.036) / Electrochem Commun by P. Guo (2009)
  15. Park S, Ruoff R S. Chemical methods for the production of graphenes. Nat Nanotech, 2009, 4: 217–224 (10.1038/nnano.2009.58) / Nat Nanotech by S. Park (2009)
  16. Boukhvalov D W, Katsnelson M I. Chemical functionalization of graphene with defects. Nano Lett, 2008, 8: 4373–4379 (10.1021/nl802234n) / Nano Lett by D. W. Boukhvalov (2008)
  17. Yang H, Shan C, Li F, et al. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun, 2009, 26: 3880–3882 (10.1039/b905085j) / Chem Commun by H. Yang (2009)
  18. Wang G, Shen X, Wang B, et al. Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon, 2009, 47: 1359–1364 (10.1016/j.carbon.2009.01.027) / Carbon by G. Wang (2009)
  19. Park S G, An J, Piner R D, et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater, 2008, 20: 6592–6594 (10.1021/cm801932u) / Chem Mater by S. G. Park (2008)
  20. Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc, 2008, 130: 5856–5857 (10.1021/ja800745y) / J Am Chem Soc by Y. Xu (2008)
  21. Xu Y, Wang Y, Liang J, et al. A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res, 2009, 2: 343–348 (10.1007/s12274-009-9032-9) / Nano Res by Y. Xu (2009)
  22. Reina A, Jia X T, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 2009, 9: 30–35 (10.1021/nl801827v) / Nano Lett by A. Reina (2009)
  23. Dato A, Radmilovic V, Lee Z, et al. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett, 2008, 8: 2012–2016 (10.1021/nl8011566) / Nano Lett by A. Dato (2008)
  24. Wu J, Becerril H A, Bao Z, et al. Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett, 2008, 92: 263302 (10.1063/1.2924771) / Appl Phys Lett by J. Wu (2008)
  25. Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 2008, 8: 323–327 (10.1021/nl072838r) / Nano Lett by X. Wang (2008)
  26. Wang Y, Chen X, Zhong Y, et al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett, 2009, 95: 063302 (10.1063/1.3204698) / Appl Phys Lett by Y. Wang (2009)
  27. Hong W, Xu Y, Lu G, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun, 2008, (10): 1555–1558 (10.1016/j.elecom.2008.08.007) / Electrochem Commun by W. Hong (2008)
  28. Liu Q, Liu Z, Zhang X, et al. Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater, 2009, 19: 894–904 (10.1002/adfm.200800954) / Adv Funct Mater by Q. Liu (2009)
  29. Liu Z, Tian J, Guo Z, et al. Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes. Adv Mater, 2008, 20: 511–515 (10.1002/adma.200702547) / Adv Mater by Z. Liu (2008)
  30. Guo Z, Du F, Ren D M, et al. Covalently porphyrin-functionalized single-walled carbon nanotubes: A novel photoactive and optical limiting donor-acceptor nanohybrid. J Mater Chem, 2006, 16: 3021–3030 (10.1039/B602349E) / J Mater Chem by Z. Guo (2006)
  31. Liu Z, Wang Y, Zhang X, et al. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl Phys Lett, 2009, 94: 021902 (10.1063/1.3068498) / Appl Phys Lett by Z. Liu (2009)
  32. Liu Z, Xu Y, Zhang X, et al. Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J Phys Chem B, 2009, 113: 9681–9686 (10.1021/jp9004357) / J Phys Chem B by Z. Liu (2009)
  33. Liu Y, Zhou J, Zhang X, et al. Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon, 2009, 47: 3113–3121 (10.1016/j.carbon.2009.07.027) / Carbon by Y. Liu (2009)
  34. Crevillen A G, Pumera M, Gonzalez M C, et al. The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains. Analyst, 2009, 134: 657–662 (10.1039/b822334c) / Analyst by A. G. Crevillen (2009)
  35. Wang Y, Li Y, Tang L, et al. Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun, 2009, 11: 889–892 (10.1016/j.elecom.2009.02.013) / Electrochem Commun by Y. Wang (2009)
  36. Lu G, Ocola L E, Chen J. Reduced graphene oxide for room-temperature gas sensors. Nanotechnol, 2009, 20: 445502 (10.1088/0957-4484/20/44/445502) / Nanotechnol by G. Lu (2009)
  37. Ansari S, Giannelis E P. Functionalized graphene sheet-poly (vinylidene fluoride) conductive nanocomposites. J Polym Sci B-Polym Phys, 2009, 47: 888–897 (10.1002/polb.21695) / J Polym Sci B-Polym Phys by S. Ansari (2009)
  38. Xu Y, Zhao L, Bai H, et al. Chemically converted graphene induced molecular flattening of 5, 10, 15, 20-tetrakis (1-methyl-4-pyridinio) porphyrin and its application for optical detection of cadmium(II) ions. J Am Chem Soc, 2009, 131: 13490–13497 (10.1021/ja905032g) / J Am Chem Soc by Y. Xu (2009)
  39. Shan C, Yang H, Han D, et al. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir, 2009, 25: 12030–12033 (10.1021/la903265p) / Langmuir by C. Shan (2009)
  40. Wang Z, Zhou X, Zhang J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C, 2009, 113: 14701–14705 / J Phys Chem C by Z. Wang (2009)
  41. Mohammad A R, Javad R, Zhou W, et al. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 2009, 3: 3884–3890 (10.1021/nn9010472) / ACS Nano by A. R. Mohammad (2009)
  42. Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors. Nano Lett, 2008, 8: 3498–3502 (10.1021/nl802558y) / Nano Lett by M. D. Stoller (2008)
  43. Yu D, Dai L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett, 2010, 1: 467–470 (10.1021/jz9003137) / J Phys Chem Lett by D. Yu (2010)
  44. Gnanaraj J S, Levi M D, Levi E, et al. Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure. J Electrochem Soc, 2001, 148: 525–536 (10.1149/1.1368096) / J Electrochem Soc by J. S. Gnanaraj (2001)
  45. Hu Y, Adelhelm P, Smarsly B M, et al. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv Funct Mater, 2007, 17: 1873–1878 (10.1002/adfm.200601152) / Adv Funct Mater by Y. Hu (2007)
  46. Chen J, Minett A I, Liu Y, et al. Direct growth of flexible carbon nanotube electrodes. Advan Mater, 2008, 20: 566–570 (10.1002/adma.200701146) / Advan Mater by J. Chen (2008)
  47. Wang C, Li D, Too C O, et al. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater, 2009, 21: 2604–2606 (10.1021/cm900764n) / Chem Mater by C. Wang (2009)
  48. Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries. Advan Mater, 1998, 10: 725–763 (10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z) / Advan Mater by M. Winter (1998)
  49. Maier J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nat Mater, 2005, 4: 805–815 (10.1038/nmat1513) / Nat Mater by J. Maier (2005)
  50. Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359–367 (10.1038/35104644) / Nature by J. M. Tarascon (2001)
  51. Wang D, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-Ion insertion. ACS Nano, 2009, 3: 907–914 (10.1021/nn900150y) / ACS Nano by D. Wang (2009)
  52. Wang D, Kou R, Choi D, et al. Ternary self-assembly of ordered metal oxide graphene nanocomposites for electrochemical energy storage. ACS Nano, 2010, 4: 1587–1595 (10.1021/nn901819n) / ACS Nano by D. Wang (2010)
  53. Zhang J, Sasaki K, Sutter E, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315: 220–222 (10.1126/science.1134569) / Science by J. Zhang (2007)
  54. Shao Y, Liu J, Wang Y, et al. Novel catalyst support materials for PEM fuel cells: Current status and future prospects. J Mater Chem, 2009, 19: 46–59 (10.1039/B808370C) / J Mater Chem by Y. Shao (2009)
  55. Kou R, Shao Y, Wang D, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun, 2009, 11: 954–957 (10.1016/j.elecom.2009.02.033) / Electrochem Commun by R. Kou (2009)
  56. Yoo E J, Okata T, Akita T, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett, 2009, 9: 2255–2259 (10.1021/nl900397t) / Nano Lett by E. J. Yoo (2009)
  57. Scheuermann G M, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J Am Chem Soc, 2009, 131: 8262–8270 (10.1021/ja901105a) / J Am Chem Soc by G. M. Scheuermann (2009)
  58. Liu H, Gao J, Xue M, et al. Processing of graphene for electrochemical application: Noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir, 2009, 25: 12006–12010 (10.1021/la9029613) / Langmuir by H. Liu (2009)
  59. Li F, Yang H, Shan C, et al. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. J Mater Chem, 2009, 19: 4022–4025 (10.1039/b902791b) / J Mater Chem by F. Li (2009)
  60. Young S, Jae R Y. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 2005, 43: 1378–1385 (10.1016/j.carbon.2005.01.007) / Carbon by S. Young (2005)
  61. Jonathan N C, Martin C, Rowan B, et al. High-performance nanotube-reinforced plastics: Understanding the mechanism of strength increase. Adv Funct Mater, 2004, 14: 791–798 (10.1002/adfm.200305200) / Adv Funct Mater by N. C. Jonathan (2004)
  62. Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotech, 2008, 3: 327–331 (10.1038/nnano.2008.96) / Nat Nanotech by T. Ramanathan (2008)
  63. Yang H, Li F, Shan C, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem, 2009, 19: 4632–4638 (10.1039/b901421g) / J Mater Chem by H. Yang (2009)
  64. Fang M, Wang K, Lu H, et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem, 2009, 19: 7098–7105 (10.1039/b908220d) / J Mater Chem by M. Fang (2009)
  65. Lee Y R, Raghu A V, Jeong H M, et al. Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys, 2009, 210: 1247–1254 (10.1002/macp.200900157) / Macromol Chem Phys by Y. R. Lee (2009)
  66. Zhang H, Bao Q, Tang D, et al. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl Phys Lett, 2009, 95: 141103 (10.1063/1.3244206) / Appl Phys Lett by H. Zhang (2009)
  67. Herrmann I K, Grass R N, Mazunin D, et al. Synthesis and covalent surface functionalization of nonoxidic iron core-shell nanomagnets. Chem Mater, 2009, 21: 3275–3281 (10.1021/cm900785u) / Chem Mater by I. K. Herrmann (2009)
  68. Liang J, Wang Y, Huang Y, et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon, 2009, 47: 922–925 (10.1016/j.carbon.2008.12.038) / Carbon by J. Liang (2009)
  69. Sint K, Wang B, Kral P. Selective ion passage through functionalized graphene nanopores. J Am Chem Soc, 2008, 130: 16448–16449 (10.1021/ja804409f) / J Am Chem Soc by K. Sint (2008)
  70. Cote L J, Kim F, Huang J. Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc, 2009, 131: 1043–1049 (10.1021/ja806262m) / J Am Chem Soc by L. J. Cote (2009)
Dates
Type When
Created 15 years ago (Aug. 8, 2010, 8:19 p.m.)
Deposited 6 years, 2 months ago (June 1, 2019, 7:23 a.m.)
Indexed 4 weeks ago (Aug. 2, 2025, midnight)
Issued 15 years ago (Aug. 10, 2010)
Published 15 years ago (Aug. 10, 2010)
Published Online 15 years ago (Aug. 10, 2010)
Published Print 14 years, 11 months ago (Sept. 1, 2010)
Funders 0

None

@article{L__2010, title={Recent progresses in application of functionalized graphene sheets}, volume={53}, ISSN={1862-281X}, url={http://dx.doi.org/10.1007/s11431-010-4050-0}, DOI={10.1007/s11431-010-4050-0}, number={9}, journal={Science China Technological Sciences}, publisher={Springer Science and Business Media LLC}, author={Lü, Peng and Feng, YiYu and Zhang, XueQuan and Li, Yu and Feng, Wei}, year={2010}, month=aug, pages={2311–2319} }