Crossref journal-article
Springer Science and Business Media LLC
Science in China Series B: Chemistry (297)
Bibliography

Luo, Q. (2008). Boron rings containing planar octa-and enneacoordinate cobalt, iron and nickel metal elements. Science in China Series B: Chemistry, 51(7), 607–613.

Authors 1
  1. Qiong Luo (first)
References 61 Referenced 28
  1. Hoffmann R, Alder R W, Wilcox C F. Planar tetracoordinate carbon. J Am Chem Soc, 1970, 92(16): 4992–4993 (10.1021/ja00719a044) / J Am Chem Soc by R. Hoffmann (1970)
  2. Collins J B, Dill J D, Jemmis E D, Apeloig Y, Schleyer P v R, Seeger R, Pople J A. Stabilization of planar tetracoordinate carbon. J Am Chem Soc, 1976, 98(18): 5419–5427 (10.1021/ja00434a001) / J Am Chem Soc by J. B. Collins (1976)
  3. Cotton F A, Millar M. The probable existence of a triple bond between two vanadium atoms. J Am Chem Soc, 1977, 99(24): 7886–7891 (10.1021/ja00466a021) / J Am Chem Soc by F. A. Cotton (1977)
  4. Keese R, Pfenninger A, Roesle A. Planarization of tetracoordinate carbon atom. Synthesis of 13-oxa-14-oxo-pentacyclo [5.5.2.1.04,15 010,15] pentadecane, a bridged ‘tetraquinacane’ preliminary communication. Helv Chim Acta, 1979, 62(1): 326–334 (10.1002/hlca.19790620136) / Helv Chim Acta by R. Keese (1979)
  5. Boldyrev A I, Simons J. Tetracoordinated planar carbon in pentaatomic molecules. J Am Chem Soc, 1998, 120(31): 7967–7972 (10.1021/ja981236u) / J Am Chem Soc by A. I. Boldyrev (1998)
  6. Li X, Wang L S, Boldyrev A I, Simons J. Tetracoordinated planar carbon in the Al4C− anion. A combined photoelectron spectroscopy and ab initio study. J Am Chem Soc, 1999, 121(25): 6033–6038 (10.1021/ja9906204) / J Am Chem Soc by X. Li (1999)
  7. Rasmussen D R, Radom L. Planar-tetracoordinate carbon in a neutral saturated hydrocarbon: theoretical design and characterization. Angew Chem Int Ed, 1999, 38(19): 2875–2878 (10.1002/(SICI)1521-3773(19991004)38:19<2875::AID-ANIE2875>3.0.CO;2-D) / Angew Chem Int Ed by D. R. Rasmussen (1999)
  8. Li X, Zhang H F, Wang L S, Geske G D, Boldyrev A I. Pentaatomic tetracoordinate planar carbon, [CAl4]2−: A new structural unit and its salt complexes. Angew Chem Int Ed, 2000, 39(20): 3630–3632 (10.1002/1521-3773(20001016)39:20<3630::AID-ANIE3630>3.0.CO;2-R) / Angew Chem Int Ed by X. Li (2000)
  9. Wang L S, Boldyrev A I, Li X, Simons J. Experimental observation of pentaatomic tetracoordinate planar carbon-containing molecules. J Am Chem Soc, 2000, 122(32): 7681–7687 (10.1021/ja993081b) / J Am Chem Soc by L. S. Wang (2000)
  10. Wang Z X, Manojkumar T K, Wannere C, Schleyer P v R. A theoretical prediction of potentially observable lithium compounds with planar tetracoordinate carbons. Org Lett, 2001, 3(9): 1249–1252 (10.1021/ol015573a) / Org Lett by Z. X. Wang (2001)
  11. Wang Z X, Schleyer P v R. A new strategy to achieve perfectly planar carbon tetracoordination. J Am Chem Soc, 2001, 123(5): 994–995 (10.1021/ja0038272) / J Am Chem Soc by Z. X. Wang (2001)
  12. Wang Z X, Schleyer P v R. The theoretical design of neutral planar tetracoordinate carbon molecules with C(C)4 substructures. J Am Chem Soc, 2002, 124(40): 11979–11982 (10.1021/ja0265310) / J Am Chem Soc by Z. X. Wang (2002)
  13. Merino G, Mendez-Rojas M A, Vela, A. (C5M2−n ) n− (M = Li, Na, K, and n = 0, 1, 2). a new family of molecules containing planar tetracoordinate carbons. J Am Chem Soc, 2003, 125(20): 6026–6027 (10.1021/ja034307k) / J Am Chem Soc by G. Merino (2003)
  14. Li S-D, Ren G-M, Miao C-Q, Jin Z-H. M4H4X: Hydrometals (M=Cu, Ni) containing tetracoordinate planar nonmetals (X=B, C, N, O). Angew Chem Int Ed, 2004, 43(11): 1371–1373 (10.1002/anie.200353068) / Angew Chem Int Ed by S.-D. Li (2004)
  15. Merino G, Mendez-Rojas M A, Beltran H I, Corminboeuf C, Heine T, Vela A. Theoretical analysis of the smallest carbon cluster containing a planar tetracoordinate carbon. J Am Chem Soc, 2004, 126(49): 16160–16169 (10.1021/ja047848y) / J Am Chem Soc by G. Merino (2004)
  16. Pancharatna P D, Mendez-Rojas M A, Merino G, Vela A, Hoffmann R. Planar Tetracoordinate carbon in extended systems. J Am Chem Soc, 2004, 126(46): 15309–15315 (10.1021/ja046405r) / J Am Chem Soc by P. D. Pancharatna (2004)
  17. Esteves P M, Ferreira N B P, Corroa R J. Neutral structures with a planar tetracoordinated carbon based on spiropentadiene analogues. J Am Chem Soc, 2005, 127(24): 8680–8685 (10.1021/ja042971a) / J Am Chem Soc by P. M. Esteves (2005)
  18. Perez N, Heine T, Barthel R, Seifert G, Vela A, Mendez-Rojas M A, Merino G. Planar tetracoordinate carbons in cyclic hydrocarbons. Org Lett, 2005, 7(8): 1509–1512 (10.1021/ol050170m) / Org Lett by N. Perez (2005)
  19. Li S-D, Ren G-M, Miao C-Q. (M4H3X)2B2O2: Hydrometal complexes (M = Ni, Mg) containing double tetracoordinate planar nonmetal centers (X = C, N). J Phys Chem A, 2005, 109(1), 259–261 (10.1021/jp040259u) / J Phys Chem A by S.-D. Li (2005)
  20. Minyaev R M, Gribanova T N, Minkin V I, Starikov A G, Hoffmann R. Planar and pyramidal tetracoordinate carbon in organoboron compounds. J Org Chem, 2005, 70(17): 6693–6704 (10.1021/jo050651j) / J Org Chem by R. M. Minyaev (2005)
  21. Su M D. Theoretical designs for planar tetracoordinated carbon in Cu, Ag, and Au organometallic chemistry: a new target for synthesis. Inorg Chem, 2005, 44(13): 4829–4833 (10.1021/ic050046z) / Inorg Chem by M. D. Su (2005)
  22. Roy D, Corminboeuf C, Wannere C S, King R B, Schleyer P v R. Planar tetracoordinate carbon atoms centered in bare four-membered rings of late transition metals. Inorg Chem, 2006, 45(22): 8902–8906 (10.1021/ic060802g) / Inorg Chem by D. Roy (2006)
  23. Yang L M, Ding Y H, Sun C C. Assembly and stabilization of a planar tetracoordinated carbon radical CAl3Si: A way to design spin-based molecular materials. J Am Chem Soc, 2007, 129(7): 1900–1901 (10.1021/ja068334x) / J Am Chem Soc by L. M. Yang (2007)
  24. Yang L M, Ding Y H, Sun C C. Design of sandwichlike complexes based on the planar tetracoordinate carbon unit CAl4 2−. J Am Chem Soc, 2007, 129(3): 658–665 (10.1021/ja066217w) / J Am Chem Soc by L. M. Yang (2007)
  25. Keese, R. Carbon flatland: planar tetracoordinate carbon and fenestranes. Chem Rev, 2006, 106(12): 4787–4808 (10.1021/cr050545h) / Chem Rev by R. Keese (2006)
  26. Merino G, Ndez-Rojas M A M, Vela A, Heine T. Recent advances in planar tetracoordinate carbon chemistry. J Comput Chem, 2007, 28(1): 362–372 (10.1002/jcc.20515) / J Comput Chem by G. Merino (2007)
  27. Islas R, Heine T, Ito K, Schleyer P v R, Merino G. Boron rings enclosing planar hypercoordinate group 14 elements. J Am Chem Soc, 2007, 129(47): 14767–14774 (10.1021/ja074956m) / J Am Chem Soc by R. Islas (2007)
  28. Exner K, Schleyer P v R. Planar hexacoordinate carbon: a viable possibility. Science, 2000, 290(5469): 1937–1940 (10.1126/science.290.5498.1937) / Science by K. Exner (2000)
  29. Wang Z-X, Schleyer P v R. Construction principles of “hyparenes”: families of molecules with planar pentacoordinate carbons. Science, 2001, 292(5526): 2465–2469 (10.1126/science.1060000) / Science by Z.-X. Wang (2001)
  30. Li S-D, Ren G-M, Miao C-Q. D5h Cu5H5X: pentagonal hydrocopper cu5h5 containing pentacoordinate planar nonmetal centers (X = B, C, N, O). Eur J Inorg Chem, 2004(11): 2232–2234 (10.1002/ejic.200400223)
  31. Wang Z-X, Schleyer P v R. Planar hypercoordinate carbons joined: wheel-shaped molecules with C-C axles. Angew Chem Int Ed, 2002, 41(21): 4082–4085 (10.1002/1521-3773(20021104)41:21<4082::AID-ANIE4082>3.0.CO;2-Q) / Angew Chem Int Ed by Z.-X. Wang (2002)
  32. Li S-D, Guo J-C, Miao C-Q, Ren G-M. [(η6-B6X)2M] (X=C, N; M=Mn, Fe, Co, Ni): A new class of transition-metal sandwich-type complexes. Angew Chem Int Ed, 2005, 44(14): 2158–2161 (10.1002/anie.200462476) / Angew Chem Int Ed by S.-D. Li (2005)
  33. Li S-D, Miao C-Q, Ren G-M, Guo J-C. Triple-decker transition-metal complexes (CnHn)M(B6C)M(CnHn) (M = Fe, Ru, Mn, Re; n = 5, 6) containing planar hexacoordinate carbon atoms. Eur J Inorg Chem, 2006(13): 2567–2571 (10.1002/ejic.200600118)
  34. Li S-D, Miao C-Q, Guo J-C. Tetradecker transition metal complexes containing double planar hexacoordinate carbons and double planar heptacoordinate borons. J Phys Chem A, 2007, 111(48): 12069–12071 (10.1021/jp076006t) / J Phys Chem A by S.-D. Li (2007)
  35. Minyaev R M, Gribanova T N, Starikov A G, Minkin V I. Heptacoordinated carbon and nitrogen in a planar boron ring. Dok. Chem, 2002, 382(4–6): 41–45 (10.1023/A:1014429323457) / Dok. Chem by R. M. Minyaev (2002)
  36. Li Q S, Jin H W. Structure and stability of B5, B5 +, and B5 − clusters. J Phys Chem A, 2002, 106(30): 7042–7047 (10.1021/jp025746t) / J Phys Chem A by Q. S. Li (2002)
  37. Zhai H-J, Wang L-S, Alexandrova A N, Boldyrev A I, Electronic structure and chemical bonding of B5 − and B5 by photoelectron spectroscopy and ab initio calculations. J Chem Phys, 2002, 117(17): 7917–7924 (10.1063/1.1511184) / J Chem Phys by H.-J. Zhai (2002)
  38. Gribanova T N, Minyaev R M, Minkin V I. Stabilization of planar four-coordinate boron, carbon, and silicon atoms in borane clusters: a quantum-chemical study. Russ J Gen Chem, 2005, 75(10): 1651–1658 (10.1007/s11176-005-0482-9) / Russ J Gen Chem by T. N. Gribanova (2005)
  39. Alexandrova A N, Boldyrev A I, Zhai H-J, Wang L-S, Sheiner E, Fowler P W. Structure and bonding in B6 − and B6: planarity and antiaromaticity. J Phys Chem A, 2003, 107(9): 1359–1369 (10.1021/jp0268866) / J Phys Chem A by A. N. Alexandrova (2003)
  40. Ma J, Li Z H, Fan K N, Zhou M F. Density functional theory study of the B6, B6 +, B6 −, and B6 2−clusters. Chem Phys Lett, 2003, 372(5–6): 708–716 (10.1016/S0009-2614(03)00484-6) / Chem Phys Lett by J. Ma (2003)
  41. Gribanova T N, Minyaev R M, Minkin V I. Planar hexacoordinated boron in organoboron compounds: an ab initio study. Mendeleev Commun, 2001, 11(5): 169–170 (10.1070/MC2001v011n05ABEH001461) / Mendeleev Commun by T. N. Gribanova (2001)
  42. Alexandrova A N, Boldyrev A I, Zhai H-J, Wang L-S. Electronic structure, isomerism, and chemical bonding in B7 − and B7. J Phys Chem A, 2004, 108(16): 3509–3517 (10.1021/jp037341u) / J Phys Chem A by A. N. Alexandrova (2004)
  43. Zhai H-J, Wang L-S, Alexandrova A N, Boldyrev A I. Hepta-and octacoordinate boron in molecular wheels of eight-and nine-atom boron clusters: observation and confirmation. Angew Chem Int Ed, 2003, 42(48): 6004–6008 (10.1002/anie.200351874) / Angew Chem Int Ed by H.-J. Zhai (2003)
  44. Fowler P W, Gray B R. Induced currents and electron counting in aromatic boron wheels: B8 2− and B9 −. Inorg Chem, 2007, 46(7): 2892–2897 (10.1021/ic062302t) / Inorg Chem by P. W. Fowler (2007)
  45. Minyaev R M, Gribanova T N, Starikov A G, Minkin V I. Octacoordinated main-group element centres in a planar cyclic B8 environment: an ab initio study. Mendeleev Commun, 2001, 11(6): 213–214 (10.1070/MC2001v011n06ABEH001496) / Mendeleev Commun by R. M. Minyaev (2001)
  46. Li S D, Miao C Q, Guo J C, Ren G M. Planar tetra-, penta-, hexa-, hepta-, and octacoordinate silicons: a universal structural pattern. J Am Chem Soc, 2004, 126(49): 16227–16231 (10.1021/ja045303y) / J Am Chem Soc by S. D. Li (2004)
  47. Li S D, Guo J C, Miao C Q, Ren G M. C2h (BnEmSi)2H2 Molecules (E = B, C, Si; n = 3-6; m = 1, 2) containing double planar tetra-, penta-, and hexacoordinate silicons. J Phys Chem A, 2005, 109(18): 4133–4136 (10.1021/jp050378p) / J Phys Chem A by S. D. Li (2005)
  48. Li S-D, Ren G-M, Miao C-Q, Jin Z-H. M4H4X: Hydrometals (M=Cu, Ni) containing tetracoordinate planar nonmetals (X=B, C, N, O). Angew Chem Int Ed, 2004, 43(11): 1371–1373 (10.1002/anie.200353068) / Angew Chem Int Ed by S.-D. Li (2004)
  49. Li S D, Ren G M, Miao C Q. Hexacoordinate planar main group atoms centered in hexagonal hydrocopper complexes Cu6H6X (X = Si, P, As). Inorg Chem, 2004, 43(20): 6331–6333 (10.1021/ic049623u) / Inorg Chem by S. D. Li (2004)
  50. Li S D, Miao C Q. M5H5X (M = Ag, Au, Pd, Pt; X = Si, Ge, P, S): hydrometal pentagons with d5h planar pentacoordinate nonmetal centers. J Phys Chem A, 2005, 109(33): 7594–7597 (10.1021/jp0530000) / J Phys Chem A by S. D. Li (2005)
  51. Lein M, Frunzke J, Frenking G. A novel class of aromatic compounds: metal-centered planar cations [Fe(Sb5)]+ and [Fe(Bi5)]+. Angew Chem Int Ed, 2003, 42(11): 1303–1306 (10.1002/anie.200390336) / Angew Chem Int Ed by M. Lein (2003)
  52. Li X, Kiran B, Cui L-F, Wang L-S. Magnetic properties in transition-metal-doped gold clusters: M@Au6 (M=Ti,V,Cr). Phys Rev Lett, 2005, 95: 253401-1–253401-4 / Phys Rev Lett by X. Li (2005)
  53. Becke A D. Density-functional thermochemistry III. The role of exact exchange. J Chem Phys, 1993, 98(7): 5648–5652 (10.1063/1.464913) / J Chem Phys by A. D. Becke (1993)
  54. Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37(2): 785–789 (10.1103/PhysRevB.37.785) / Phys Rev B by C. Lee (1988)
  55. Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38(6): 3098–3100 (10.1103/PhysRevA.38.3098) / Phys Rev A by A. D. Becke (1988)
  56. Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B, 1986, 33(12): 8822 (10.1103/PhysRevB.33.8822) / Phys Rev B by J. P. Perdew (1986)
  57. Krishnan R, Binkley J S, Seeger R, Pople J A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys, 1980, 72(1): 650–654 (10.1063/1.438955) / J Chem Phys by R. Krishnan (1980)
  58. Schleyer P v R, Maerker C, Dransfeld A, Jiao H J, Hommes N J R v E. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc, 1996, 118(26): 6317–6318 (10.1021/ja960582d) / J Am Chem Soc by P. v. R. Schleyer (1996)
  59. Dodds J L, McWeeny R, Sadlej A J. Open-shell states in perturbation-dependent non-orthogonal basis sets. Mol Phys, 1980, 41(6): 1419–1430 (10.1080/00268978000103631) / Mol Phys by J. L. Dodds (1980)
  60. Wolinski K, Hilton J F, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc, 1990, 112(23): 8251–8260 (10.1021/ja00179a005) / J Am Chem Soc by K. Wolinski (1990)
  61. Gaussian 03 B.04 ed.: Gaussian, Inc.: Pittsburgh, PA, 2003
Dates
Type When
Created 17 years, 2 months ago (June 20, 2008, 9:15 p.m.)
Deposited 3 years, 3 months ago (May 15, 2022, 11:55 p.m.)
Indexed 1 year, 4 months ago (April 27, 2024, 10:39 a.m.)
Issued 17 years, 2 months ago (June 22, 2008)
Published 17 years, 2 months ago (June 22, 2008)
Published Online 17 years, 2 months ago (June 22, 2008)
Published Print 17 years, 2 months ago (July 1, 2008)
Funders 0

None

@article{Luo_2008, title={Boron rings containing planar octa-and enneacoordinate cobalt, iron and nickel metal elements}, volume={51}, ISSN={1862-2771}, url={http://dx.doi.org/10.1007/s11426-008-0073-9}, DOI={10.1007/s11426-008-0073-9}, number={7}, journal={Science in China Series B: Chemistry}, publisher={Springer Science and Business Media LLC}, author={Luo, Qiong}, year={2008}, month=jun, pages={607–613} }