Crossref journal-article
Springer Science and Business Media LLC
International Journal of Computer Vision (297)
Bibliography

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., & Szeliski, R. (2010). A Database and Evaluation Methodology for Optical Flow. International Journal of Computer Vision, 92(1), 1–31.

Authors 6
  1. Simon Baker (first)
  2. Daniel Scharstein (additional)
  3. J. P. Lewis (additional)
  4. Stefan Roth (additional)
  5. Michael J. Black (additional)
  6. Richard Szeliski (additional)
References 99 Referenced 1,504
  1. Adiv, G. (1985). Determining three-dimensional motion and structure from optical flow generated by several moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(4), 384–401. (10.1109/TPAMI.1985.4767678) / IEEE Transactions on Pattern Analysis and Machine Intelligence by G. Adiv (1985)
  2. Aggarwal, J., & Nandhakumar, N. (1988). On the computation of motion from sequences of images—a review. Proceedings of the IEEE, 76(8), 917–935. (10.1109/5.5965) / Proceedings of the IEEE by J. Aggarwal (1988)
  3. Anandan, P. (1989). A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision, 2(3), 283–310. (10.1007/BF00158167) / International Journal of Computer Vision by P. Anandan (1989)
  4. Anandan, P., & Weiss, R. (1985). Introducing smoothness constraint in a matching approach for the computation of displacement fields. In Proceedings of the DARPA image understanding workshop (pp. 186–196). / Proceedings of the DARPA image understanding workshop by P. Anandan (1985)
  5. Baker, S., & Matthews, I. (2004). Lucas-Kanade 20 years on: a unifying framework. International Journal of Computer Vision, 46(3), 221–255. (10.1023/B:VISI.0000011205.11775.fd) / International Journal of Computer Vision by S. Baker (2004)
  6. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., & Szeliski, R. (2007). A database and evaluation methodology for optical flow. In Proceedings of the IEEE international conference on computer vision. (10.1109/ICCV.2007.4408903)
  7. Barron, J., Fleet, D., & Beauchemin, S. (1994). Performance of optical flow techniques. International Journal of Computer Vision, 12(1), 43–77. (10.1007/BF01420984) / International Journal of Computer Vision by J. Barron (1994)
  8. Battiti, R., Amaldi, E., & Koch, C. (1991). Computing optical flow across multiple scales: an adaptive coarse-to-fine strategy. International Journal of Computer Vision, 6(2), 133–145. (10.1007/BF00128153) / International Journal of Computer Vision by R. Battiti (1991)
  9. Beier, T., & Neely, S. (1992). Feature-based image metamorphosis. In Annual conference series: Vol. 26(2). ACM computer graphics, SIGGRAPH (pp. 35–42). / ACM computer graphics, SIGGRAPH / Annual conference series by T. Beier (1992)
  10. Bergen, J., Anandan, P., Hanna, K., & Hingorani, R. (1992). Hierarchical model-based motion estimation. In Proceedings of the European conference on computer vision (pp. 237–252). / Proceedings of the European conference on computer vision by J. Bergen (1992)
  11. Black, M., & Anandan, P. (1991). Robust dynamic motion estimation over time. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 296–302). (10.1109/CVPR.1991.139705) / Proceedings of the IEEE conference on computer vision and pattern recognition by M. Black (1991)
  12. Black, M., & Anandan, P. (1996). The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1), 75–104. (10.1006/cviu.1996.0006) / Computer Vision and Image Understanding by M. Black (1996)
  13. Black, M., & Jepson, A. (1996). Estimating optical flow in segmented images using variable-order parametric models with local deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10), 972–986. (10.1109/34.541407) / IEEE Transactions on Pattern Analysis and Machine Intelligence by M. Black (1996)
  14. Blake, A., & Zisserman, A. (1987). Visual reconstruction. Cambridge: MIT Press. (10.7551/mitpress/7132.001.0001) / Visual reconstruction by A. Blake (1987)
  15. Bleyer, M., & Chambon, S. (2010). Does color really help in dense stereo matching? In Proceedings of the international symposium 3D data processing, visualization and transmission.
  16. Bleyer, M., Rother, C., & Kohli, P. (2010). Surface stereo with soft segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition.
  17. Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), 1222–1239. (10.1109/34.969114) / IEEE Transactions on Pattern Analysis and Machine Intelligence by Y. Boykov (2001)
  18. Brox, T., Bregler, C., & Malik, J. (2009). Large displacement optical flow. In Proceedings of the IEEE conference on computer vision and pattern recognition. (10.1109/CVPR.2009.5206697)
  19. Brox, T., Bruhn, A., Papenberg, N., &Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In Proceedings of the European Conference on Computer Vision (Vol. 4, pp. 25–36). / Proceedings of the European Conference on Computer Vision by T. Brox (2004)
  20. Bruhn, A., Weickert, J., & Schnörr, C. (2005). Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. International Journal of Computer Vision, 61(3), 211–231. (10.1023/B:VISI.0000045324.43199.43) / International Journal of Computer Vision by A. Bruhn (2005)
  21. Bruhn, A., Weickert, J., Kohlberger, T., & Schnörr, C. (2006). A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision, 70(3), 257–277. (10.1007/s11263-006-6616-7) / International Journal of Computer Vision by A. Bruhn (2006)
  22. Burt, P., Yen, C., & Xu, X. (1982). Local correlation measures for motion analysis: a comparative study. In Proceedings of the IEEE conference on pattern recognition and image processing (pp. 269–274). / Proceedings of the IEEE conference on pattern recognition and image processing by P. Burt (1982)
  23. Burt, P., Yen, C., & Xu, X. (1983). Multi-resolution flow-through motion analysis. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 246–252). / Proceedings of the IEEE conference on computer vision and pattern recognition by P. Burt (1983)
  24. Cassisa, C., Simoens, S., & Prinet, V. (2009). Two-frame optical flow formulation in an unwarped multiresolution scheme. In Proceedings of the Iberoamerican congress on pattern recognition (pp. 790–797). / Proceedings of the Iberoamerican congress on pattern recognition by C. Cassisa (2009)
  25. Cooke, T. (2008). Two applications of graph-cuts to image processing. In Proceedings of digital image computing: techniques and applications (pp. 498–504). (10.1109/DICTA.2008.32) / Proceedings of digital image computing: techniques and applications by T. Cooke (2008)
  26. DNA Research (2008). 3Delight rendering software. http://www.3delight.com/ .
  27. Enkelman, W. (1986). Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences. In Proceedings of the workshop on motion: representations and analysis (pp. 81–87). / Proceedings of the workshop on motion: representations and analysis by W. Enkelman (1986)
  28. Everingham, M., Van Gool, L., Williams, C., Winn, J., & Zisserman, A. (2009). The PASCAL visual object classes challenge 2009. http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html
  29. Fei-Fei, L., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 594–611. (10.1109/TPAMI.2006.79) / IEEE Transactions on Pattern Analysis and Machine Intelligence by L. Fei-Fei (2006)
  30. Fleet, D., & Jepson, A. (1990). Computation of component image velocity from local phase information. International Journal of Computer Vision, 5(1), 77–104. (10.1007/BF00056772) / International Journal of Computer Vision by D. Fleet (1990)
  31. Fuh, C., & Maragos, P. (1989). Region-based optical flow estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 130–135). (10.1109/CVPR.1989.37840) / Proceedings of the IEEE conference on computer vision and pattern recognition by C. Fuh (1989)
  32. Georghiades, A., Belhumeur, P., & Kriegman, D. (2001). From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 643–660. (10.1109/34.927464) / IEEE Transactions on Pattern Analysis and Machine Intelligence by A. Georghiades (2001)
  33. Glazer, F., Reyonds, G., & Anandan, P. (1983). Scene matching by hierarchical correlation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 432–441). / Proceedings of the IEEE conference on computer vision and pattern recognition by F. Glazer (1983)
  34. Glocker, B., Paragios, N., Komodakis, N., Tziritas, G., & Navab, N. (2008). Optical flow estimation with uncertainties through dynamic MRFs. In Proceedings of the IEEE conference on computer vision and pattern recognition. (10.1109/CVPR.2008.4587562)
  35. Golland, P., & Bruckstein, A. (1997). Motion from color. Computer Vision and Image Understanding, 68(3), 346–362. (10.1006/cviu.1997.0553) / Computer Vision and Image Understanding by P. Golland (1997)
  36. Gross, R., Matthews, I., Cohn, J., Kanade, T., & Baker, S. (2008). Multi-PIE. In Proceedings of the international conference on automatic face and gesture recognition. (10.1109/AFGR.2008.4813399)
  37. Hanna, K. (1991). Direct multi-resolution estimation of ego-motion and structure from motion. In Proceedings of the IEEE workshop on visual motion (pp. 156–162). (10.1109/WVM.1991.212812) / Proceedings of the IEEE workshop on visual motion by K. Hanna (1991)
  38. Haussecker, H., & Fleet, D. (2000). Computing optical flow with physical models of brightness variation. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 760–767). / Proceedings of the IEEE conference on computer vision and pattern recognition by H. Haussecker (2000)
  39. Herbst, E., Seitz, S., & Baker, S. (2009). Occlusion reasoning for temporal interpolation using optical flow. Technical report UW-CSE-09-08-01, Department of Computer Science and Engineering University of Washington.
  40. Horn, B. (1986). Robot vision. Cambridge: MIT Press. / Robot vision by B. Horn (1986)
  41. Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203. (10.1016/0004-3702(81)90024-2) / Artificial Intelligence by B. Horn (1981)
  42. Jepson, A., & Black, M. (1993). Mixture models for optical flow computation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 760–761). (10.1109/CVPR.1993.341161) / Proceedings of the IEEE conference on computer vision and pattern recognition by A. Jepson (1993)
  43. Ju, S. (1998). Estimating image motion in layers: the skin and bones model. PhD thesis, Department of Computer Science, University of Toronto.
  44. Ju, S., Black, M., & Jepson, A. (1996). Skin and bones: multi-layer, locally affine, optical flow and regularization of transparency. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 307–314). (10.1109/CVPR.1996.517090) / Proceedings of the IEEE conference on computer vision and pattern recognition by S. Ju (1996)
  45. Jung, H., Lee, K., & Lee, S. (2008). Toward global minimum through combined local minima. In Proceedings of the European conference on computer vision (Vol. 4, pp. 298–311). / Proceedings of the European conference on computer vision by H. Jung (2008)
  46. Landis, H. (2002). Production-ready global illumination. In L. Gritz (Ed.), RenderMan in production: SIGGRAPH 2002 course 16 (pp. 87–100). New York: ACM. / RenderMan in production: SIGGRAPH 2002 course 16 by H. Landis (2002)
  47. Le Besnerais, G., & Champagnat, F. (2005). Dense optical flow by iterative local window registration. In Proceedings of the international conference on image processing (Vol. 1, pp. 137–140). / Proceedings of the international conference on image processing by G. Le Besnerais (2005)
  48. Lei, C., & Yang, Y. (2009). Optical flow estimation on coarse-to-fine region-trees using discrete optimization. In Proceedings of the IEEE international conference on computer vision.
  49. Lempitsky, V., Roth, S., & Rother, C. (2008). Fusion flow: discrete-continuous optimization for optical flow estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition.
  50. Levoy, M. (1988). Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8(3), 29–37. (10.1109/38.511) / IEEE Computer Graphics and Applications by M. Levoy (1988)
  51. Li, Y., & Huttenlocher, D. (2008). Learning for optical flow using stochastic optimization. In Proceedings of the European conference on computer vision (Vol. 2, pp. 373–391). / Proceedings of the European conference on computer vision by Y. Li (2008)
  52. Liu, C., Freeman, W., Adelson, E., & Weiss, Y. (2008). Human-assisted motion annotation. In Proceedings of the IEEE conference on computer vision and pattern recognition. (10.1109/CVPR.2008.4587845)
  53. Liu, C., Yuen, J., Torralba, A., Sivic, J., & Freeman, W. (2008). SIFT flow: dense correspondence across difference scenes. In Proceedings of the European conference on computer vision (Vol. 3, pp. 28–42). / Proceedings of the European conference on computer vision by C. Liu (2008)
  54. Lucas, B., & Kanade, T. (1981). An iterative image registration technique with an application in stereo vision. In Proceedings of the international joint conference on artificial intelligence (pp. 674–679). / Proceedings of the international joint conference on artificial intelligence by B. Lucas (1981)
  55. Mahajan, D., Huang, F., Matusik, W., Ramamoorthi, R., & Belhumeur, P. (2009). Moving gradients: a path-based method for plausible image interpolation. In Annual conference series. ACM computer graphics, SIGGRAPH. (10.1145/1576246.1531348)
  56. Markandey, V., & Flinchbaugh, B. (1990). Multispectral constraints for optical flow computation. In Proceedings of the IEEE international conference on computer vision (pp. 38–41). / Proceedings of the IEEE international conference on computer vision by V. Markandey (1990)
  57. McCane, B., Novins, K., Crannitch, D., & Galvin, B. (2001). On benchmarking optical flow. Computer Vision and Image Understanding, 84(1), 126–143. (10.1006/cviu.2001.0930) / Computer Vision and Image Understanding by B. McCane (2001)
  58. Mitiche, A., & Bouthemy, P. (1996). Computation and analysis of image motion: a synopsis of current problems and methods. International Journal of Computer Vision, 19(1), 29–55. (10.1007/BF00131147) / International Journal of Computer Vision by A. Mitiche (1996)
  59. Mova LLC (2004). Contour reality capture. http://www.mova.com/ .
  60. Murray, D., & Buxton, B. (1987). Scene segmentation from visual motion using global optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(2), 220–228. (10.1109/TPAMI.1987.4767896) / IEEE Transactions on Pattern Analysis and Machine Intelligence by D. Murray (1987)
  61. Nagel, H.-H., & Enkelmann, W. (1986). An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(5), 565–593. (10.1109/TPAMI.1986.4767833) / IEEE Transactions on Pattern Analysis and Machine Intelligence by H.-H. Nagel (1986)
  62. Negahdaripour, S. (1998). Revised definition of optical flow: integration of radiometric and geometric cues for dynamic scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(9), 961–979. (10.1109/34.713362) / IEEE Transactions on Pattern Analysis and Machine Intelligence by S. Negahdaripour (1998)
  63. Nir, T., Bruckstein, A., & Kimmel, R. (2008). Over-parameterized variational optical flow. International Journal of Computer Vision, 76(2), 205–216. (10.1007/s11263-007-0051-2) / International Journal of Computer Vision by T. Nir (2008)
  64. Ohta, N. (1989). Optical flow detection by color images. In International conference on image processing (pp. 801–805). / International conference on image processing by N. Ohta (1989)
  65. Otte, M., & Nagel, H.-H. (1994). Optical flow estimation: advances and comparisons. In Proceedings of the European conference on computer vision (pp. 51–60). / Proceedings of the European conference on computer vision by M. Otte (1994)
  66. Philips, P., Scruggs, W., O’Toole, A., Flynn, P., Bowyer, K., Schott, C., & Sharpe, M. (2005). Overview of the face recognition grand challenge. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 947–954). / Proceedings of the IEEE conference on computer vision and pattern recognition by P. Philips (2005)
  67. Pock, T., Pock, M., & Bischof, H. (2007). Algorithmic differentiation: application to variational problems in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7), 1180–1193. (10.1109/TPAMI.2007.1044) / IEEE Transactions on Pattern Analysis and Machine Intelligence by T. Pock (2007)
  68. Pratt, W. (1974). Correlation techniques of image registration. IEEE Transactions on Aerospace and Electronic Systems, AES-10, 353–358. (10.1109/TAES.1974.307828) / IEEE Transactions on Aerospace and Electronic Systems by W. Pratt (1974)
  69. Ramnath, K., Baker, S., Matthews, I., & Ramanan, D. (2008). Increasing the density of active appearance models. In Proceedings of the IEEE conference on computer vision and pattern recognition. (10.1109/CVPR.2008.4587517)
  70. Rannacher, J. (2009). Realtime 3D motion estimation on graphics hardware. Undergraduate thesis, Heidelberg University.
  71. Ren, X. (2008). Local grouping for optical flow. In Proceedings of the IEEE conference on computer vision and pattern recognition.
  72. Roth, S., & Black, M. (2007). On the spatial statistics of optical flow. International Journal of Computer Vision, 74(1), 33–50. (10.1007/s11263-006-0016-x) / International Journal of Computer Vision by S. Roth (2007)
  73. Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(13), 7–42. (10.1023/A:1014573219977) / International Journal of Computer Vision by D. Scharstein (2002)
  74. Scharstein, D., & Szeliski, R. (2003). High-accuracy stereo depth maps using structured light. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 195–202). / Proceedings of the IEEE conference on computer vision and pattern recognition by D. Scharstein (2003)
  75. Seitz, S., & Baker, S. (2009). Filter flow. In Proceedings of the IEEE international conference on computer vision. (10.1109/ICCV.2009.5459155)
  76. Seitz, S., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 519–526). / Proceedings of the IEEE conference on computer vision and pattern recognition by S. Seitz (2006)
  77. Shade, J., Gortler, S., He, L.-W., & Szeliski, R. (1998). Layered depth images. In Annual conference series. ACM computer graphics, SIGGRAPH (pp. 231–242). / Annual conference series. ACM computer graphics, SIGGRAPH by J. Shade (1998)
  78. Shizawa, M., & Mase, K. (1991). A unified computational theory for motion transparency and motion boundaries based on eigenenergy analysis. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 289–295). (10.1109/CVPR.1991.139704) / Proceedings of the IEEE conference on computer vision and pattern recognition by M. Shizawa (1991)
  79. Sim, T., Baker, S., & Bsat, M. (2003). The CMU pose, illumination, and expression database. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), 1615–1618. (10.1109/TPAMI.2003.1251154) / IEEE Transactions on Pattern Analysis and Machine Intelligence by T. Sim (2003)
  80. Stiller, C., & Konrad, J. (1999). Estimating motion in image sequences: a tutorial on modeling and computation of 2D motion. IEEE Signal Processing Magazine, 16(4), 70–91. (10.1109/79.774934) / IEEE Signal Processing Magazine by C. Stiller (1999)
  81. Sun, C. (1999). Fast optical flow using cross correlation and shortest-path techniques. In Proceedings of digital image computing: techniques and applications (pp. 143–148). / Proceedings of digital image computing: techniques and applications by C. Sun (1999)
  82. Sun, J., Shum, H.-Y., & Zheng, N. (2003). Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7), 787–800. (10.1109/TPAMI.2003.1206509) / IEEE Transactions on Pattern Analysis and Machine Intelligence by J. Sun (2003)
  83. Sun, D., Roth, S., Lewis, J., & Black, M. (2008). Learning optical flow. In Proceedings of the European conference on computer vision (Vol. 3, pp. 83–97). / Proceedings of the European conference on computer vision by D. Sun (2008)
  84. Sun, D., Roth, S., & Black, M. (2010). Secrets of optical flow estimation and their principles. In Proceedings of the IEEE conference on computer vision and pattern recognition. (10.1109/CVPR.2010.5539939)
  85. Szeliski, R. (1999). Prediction error as a quality metric for motion and stereo. In Proceedings of the IEEE international conference on computer vision (pp. 781–788). (10.1109/ICCV.1999.790301) / Proceedings of the IEEE international conference on computer vision by R. Szeliski (1999)
  86. Tappen, M., Adelson, E., & Freeman, W. (2006). Estimating intrinsic component images using non-linear regression. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 1992–1999). / Proceedings of the IEEE conference on computer vision and pattern recognition by M. Tappen (2006)
  87. Trobin, W., Pock, T., Cremers, D., & Bischof, H. (2008). Continuous energy minimization via repeated binary fusion. In Proceedings of the European conference on computer vision (Vol. 4, pp. 677–690). / Proceedings of the European conference on computer vision by W. Trobin (2008)
  88. Trobin, W., Pock, T., Cremers, D., & Bischof, H. (2008). An unbiased second-order prior for high-accuracy motion estimation. In Proceedings of pattern recognition, DAGM (pp. 396–405). (10.1007/978-3-540-69321-5_40) / Proceedings of pattern recognition, DAGM by W. Trobin (2008)
  89. Valgaerts, L., Bruhn, A., & Weickert, J. (2008). A variational model for the joint recovery of the fundamental matrix and the optical flow. In Proceedings of pattern recognition, DAGM (pp. 314–324). (10.1007/978-3-540-69321-5_32) / Proceedings of pattern recognition, DAGM by L. Valgaerts (2008)
  90. Vedula, S., Baker, S., Rander, P., Collins, R., & Kanade, T. (2005). Three-dimensional scene flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3), 475–480. (10.1109/TPAMI.2005.63) / IEEE Transactions on Pattern Analysis and Machine Intelligence by S. Vedula (2005)
  91. Wang, J., & Adelson, E. (1993). Layered representation for motion analysis. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 361–366). (10.1109/CVPR.1993.341105) / Proceedings of the IEEE conference on computer vision and pattern recognition by J. Wang (1993)
  92. Wedel, A., Pock, T., Braun, J., Franke, U., & Cremers, D. (2008). Duality TV-L1 flow with fundamental matrix prior. In Proceedings of image and vision computing, New Zealand. (10.1109/IVCNZ.2008.4762119)
  93. Wedel, A., Pock, T., Zach, C., Cremers, D., & Bischof, H. (2008). An improved algorithm for TV-L1 optical flow. In Proceedings of the Dagstuhl motion workshop.
  94. Wedel, A., Cremers, D., Pock, T., & Bischof, H. (2009). Structure- and motion-adaptive regularization for high accuracy optic flow. In Proceedings of the IEEE international conference on computer vision. (10.1109/ICCV.2009.5459375)
  95. Weiss, Y. (1997). Smoothness in layers: motion segmentation using nonparametric mixture estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 520–526). (10.1109/CVPR.1997.609375) / Proceedings of the IEEE conference on computer vision and pattern recognition by Y. Weiss (1997)
  96. Werlberger, M., Trobin, W., Pock, T., Bischof, H., Wedel, A., & Cremers, D. (2009). Anisotropic Huber-L1 optical flow. In Proceedings of the British machine vision conference. (10.5244/C.23.108)
  97. Xu, L., Chen, J., & Jia, J. (2008). A segmentation based variational model for accurate optical flow estimation. In Proceedings of the European conference on computer vision (Vol. 1, pp. 671–684). / Proceedings of the European conference on computer vision by L. Xu (2008)
  98. Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B., & Seidel, H.-P. (2009). Complementary optic flow. In Proceedings of seventh international workshop on energy minimization methods in computer vision and pattern recognition. (10.1007/978-3-642-03641-5_16)
  99. Zitnick, C., Kang, S., Uyttendaele, M., Winder, S., & Szeliski, R. (2004). High-quality video view interpolation using a layered representation. In Annual conference series: Vol. 23(2). ACM computer graphics, SIGGRAPH (pp. 600–608). (10.1145/1186562.1015766) / ACM computer graphics, SIGGRAPH / Annual conference series by C. Zitnick (2004)
Dates
Type When
Created 14 years, 8 months ago (Nov. 29, 2010, 4:15 p.m.)
Deposited 6 years, 2 months ago (June 6, 2019, 1:09 p.m.)
Indexed 1 day, 11 hours ago (Aug. 23, 2025, 1:06 a.m.)
Issued 14 years, 8 months ago (Nov. 30, 2010)
Published 14 years, 8 months ago (Nov. 30, 2010)
Published Online 14 years, 8 months ago (Nov. 30, 2010)
Published Print 14 years, 5 months ago (March 1, 2011)
Funders 0

None

@article{Baker_2010, title={A Database and Evaluation Methodology for Optical Flow}, volume={92}, ISSN={1573-1405}, url={http://dx.doi.org/10.1007/s11263-010-0390-2}, DOI={10.1007/s11263-010-0390-2}, number={1}, journal={International Journal of Computer Vision}, publisher={Springer Science and Business Media LLC}, author={Baker, Simon and Scharstein, Daniel and Lewis, J. P. and Roth, Stefan and Black, Michael J. and Szeliski, Richard}, year={2010}, month=nov, pages={1–31} }