Crossref
journal-article
Springer Science and Business Media LLC
International Journal of Computer Vision (297)
References
99
Referenced
1,504
-
Adiv, G. (1985). Determining three-dimensional motion and structure from optical flow generated by several moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(4), 384–401.
(
10.1109/TPAMI.1985.4767678
) / IEEE Transactions on Pattern Analysis and Machine Intelligence by G. Adiv (1985) -
Aggarwal, J., & Nandhakumar, N. (1988). On the computation of motion from sequences of images—a review. Proceedings of the IEEE, 76(8), 917–935.
(
10.1109/5.5965
) / Proceedings of the IEEE by J. Aggarwal (1988) -
Anandan, P. (1989). A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision, 2(3), 283–310.
(
10.1007/BF00158167
) / International Journal of Computer Vision by P. Anandan (1989) - Anandan, P., & Weiss, R. (1985). Introducing smoothness constraint in a matching approach for the computation of displacement fields. In Proceedings of the DARPA image understanding workshop (pp. 186–196). / Proceedings of the DARPA image understanding workshop by P. Anandan (1985)
-
Baker, S., & Matthews, I. (2004). Lucas-Kanade 20 years on: a unifying framework. International Journal of Computer Vision, 46(3), 221–255.
(
10.1023/B:VISI.0000011205.11775.fd
) / International Journal of Computer Vision by S. Baker (2004) -
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., & Szeliski, R. (2007). A database and evaluation methodology for optical flow. In Proceedings of the IEEE international conference on computer vision.
(
10.1109/ICCV.2007.4408903
) -
Barron, J., Fleet, D., & Beauchemin, S. (1994). Performance of optical flow techniques. International Journal of Computer Vision, 12(1), 43–77.
(
10.1007/BF01420984
) / International Journal of Computer Vision by J. Barron (1994) -
Battiti, R., Amaldi, E., & Koch, C. (1991). Computing optical flow across multiple scales: an adaptive coarse-to-fine strategy. International Journal of Computer Vision, 6(2), 133–145.
(
10.1007/BF00128153
) / International Journal of Computer Vision by R. Battiti (1991) - Beier, T., & Neely, S. (1992). Feature-based image metamorphosis. In Annual conference series: Vol. 26(2). ACM computer graphics, SIGGRAPH (pp. 35–42). / ACM computer graphics, SIGGRAPH / Annual conference series by T. Beier (1992)
- Bergen, J., Anandan, P., Hanna, K., & Hingorani, R. (1992). Hierarchical model-based motion estimation. In Proceedings of the European conference on computer vision (pp. 237–252). / Proceedings of the European conference on computer vision by J. Bergen (1992)
-
Black, M., & Anandan, P. (1991). Robust dynamic motion estimation over time. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 296–302).
(
10.1109/CVPR.1991.139705
) / Proceedings of the IEEE conference on computer vision and pattern recognition by M. Black (1991) -
Black, M., & Anandan, P. (1996). The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1), 75–104.
(
10.1006/cviu.1996.0006
) / Computer Vision and Image Understanding by M. Black (1996) -
Black, M., & Jepson, A. (1996). Estimating optical flow in segmented images using variable-order parametric models with local deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10), 972–986.
(
10.1109/34.541407
) / IEEE Transactions on Pattern Analysis and Machine Intelligence by M. Black (1996) -
Blake, A., & Zisserman, A. (1987). Visual reconstruction. Cambridge: MIT Press.
(
10.7551/mitpress/7132.001.0001
) / Visual reconstruction by A. Blake (1987) - Bleyer, M., & Chambon, S. (2010). Does color really help in dense stereo matching? In Proceedings of the international symposium 3D data processing, visualization and transmission.
- Bleyer, M., Rother, C., & Kohli, P. (2010). Surface stereo with soft segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition.
-
Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), 1222–1239.
(
10.1109/34.969114
) / IEEE Transactions on Pattern Analysis and Machine Intelligence by Y. Boykov (2001) -
Brox, T., Bregler, C., & Malik, J. (2009). Large displacement optical flow. In Proceedings of the IEEE conference on computer vision and pattern recognition.
(
10.1109/CVPR.2009.5206697
) - Brox, T., Bruhn, A., Papenberg, N., &Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In Proceedings of the European Conference on Computer Vision (Vol. 4, pp. 25–36). / Proceedings of the European Conference on Computer Vision by T. Brox (2004)
-
Bruhn, A., Weickert, J., & Schnörr, C. (2005). Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. International Journal of Computer Vision, 61(3), 211–231.
(
10.1023/B:VISI.0000045324.43199.43
) / International Journal of Computer Vision by A. Bruhn (2005) -
Bruhn, A., Weickert, J., Kohlberger, T., & Schnörr, C. (2006). A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision, 70(3), 257–277.
(
10.1007/s11263-006-6616-7
) / International Journal of Computer Vision by A. Bruhn (2006) - Burt, P., Yen, C., & Xu, X. (1982). Local correlation measures for motion analysis: a comparative study. In Proceedings of the IEEE conference on pattern recognition and image processing (pp. 269–274). / Proceedings of the IEEE conference on pattern recognition and image processing by P. Burt (1982)
- Burt, P., Yen, C., & Xu, X. (1983). Multi-resolution flow-through motion analysis. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 246–252). / Proceedings of the IEEE conference on computer vision and pattern recognition by P. Burt (1983)
- Cassisa, C., Simoens, S., & Prinet, V. (2009). Two-frame optical flow formulation in an unwarped multiresolution scheme. In Proceedings of the Iberoamerican congress on pattern recognition (pp. 790–797). / Proceedings of the Iberoamerican congress on pattern recognition by C. Cassisa (2009)
-
Cooke, T. (2008). Two applications of graph-cuts to image processing. In Proceedings of digital image computing: techniques and applications (pp. 498–504).
(
10.1109/DICTA.2008.32
) / Proceedings of digital image computing: techniques and applications by T. Cooke (2008) - DNA Research (2008). 3Delight rendering software. http://www.3delight.com/ .
- Enkelman, W. (1986). Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences. In Proceedings of the workshop on motion: representations and analysis (pp. 81–87). / Proceedings of the workshop on motion: representations and analysis by W. Enkelman (1986)
- Everingham, M., Van Gool, L., Williams, C., Winn, J., & Zisserman, A. (2009). The PASCAL visual object classes challenge 2009. http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html
-
Fei-Fei, L., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 594–611.
(
10.1109/TPAMI.2006.79
) / IEEE Transactions on Pattern Analysis and Machine Intelligence by L. Fei-Fei (2006) -
Fleet, D., & Jepson, A. (1990). Computation of component image velocity from local phase information. International Journal of Computer Vision, 5(1), 77–104.
(
10.1007/BF00056772
) / International Journal of Computer Vision by D. Fleet (1990) -
Fuh, C., & Maragos, P. (1989). Region-based optical flow estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 130–135).
(
10.1109/CVPR.1989.37840
) / Proceedings of the IEEE conference on computer vision and pattern recognition by C. Fuh (1989) -
Georghiades, A., Belhumeur, P., & Kriegman, D. (2001). From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 643–660.
(
10.1109/34.927464
) / IEEE Transactions on Pattern Analysis and Machine Intelligence by A. Georghiades (2001) - Glazer, F., Reyonds, G., & Anandan, P. (1983). Scene matching by hierarchical correlation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 432–441). / Proceedings of the IEEE conference on computer vision and pattern recognition by F. Glazer (1983)
-
Glocker, B., Paragios, N., Komodakis, N., Tziritas, G., & Navab, N. (2008). Optical flow estimation with uncertainties through dynamic MRFs. In Proceedings of the IEEE conference on computer vision and pattern recognition.
(
10.1109/CVPR.2008.4587562
) -
Golland, P., & Bruckstein, A. (1997). Motion from color. Computer Vision and Image Understanding, 68(3), 346–362.
(
10.1006/cviu.1997.0553
) / Computer Vision and Image Understanding by P. Golland (1997) -
Gross, R., Matthews, I., Cohn, J., Kanade, T., & Baker, S. (2008). Multi-PIE. In Proceedings of the international conference on automatic face and gesture recognition.
(
10.1109/AFGR.2008.4813399
) -
Hanna, K. (1991). Direct multi-resolution estimation of ego-motion and structure from motion. In Proceedings of the IEEE workshop on visual motion (pp. 156–162).
(
10.1109/WVM.1991.212812
) / Proceedings of the IEEE workshop on visual motion by K. Hanna (1991) - Haussecker, H., & Fleet, D. (2000). Computing optical flow with physical models of brightness variation. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 760–767). / Proceedings of the IEEE conference on computer vision and pattern recognition by H. Haussecker (2000)
- Herbst, E., Seitz, S., & Baker, S. (2009). Occlusion reasoning for temporal interpolation using optical flow. Technical report UW-CSE-09-08-01, Department of Computer Science and Engineering University of Washington.
- Horn, B. (1986). Robot vision. Cambridge: MIT Press. / Robot vision by B. Horn (1986)
-
Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203.
(
10.1016/0004-3702(81)90024-2
) / Artificial Intelligence by B. Horn (1981) -
Jepson, A., & Black, M. (1993). Mixture models for optical flow computation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 760–761).
(
10.1109/CVPR.1993.341161
) / Proceedings of the IEEE conference on computer vision and pattern recognition by A. Jepson (1993) - Ju, S. (1998). Estimating image motion in layers: the skin and bones model. PhD thesis, Department of Computer Science, University of Toronto.
-
Ju, S., Black, M., & Jepson, A. (1996). Skin and bones: multi-layer, locally affine, optical flow and regularization of transparency. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 307–314).
(
10.1109/CVPR.1996.517090
) / Proceedings of the IEEE conference on computer vision and pattern recognition by S. Ju (1996) - Jung, H., Lee, K., & Lee, S. (2008). Toward global minimum through combined local minima. In Proceedings of the European conference on computer vision (Vol. 4, pp. 298–311). / Proceedings of the European conference on computer vision by H. Jung (2008)
- Landis, H. (2002). Production-ready global illumination. In L. Gritz (Ed.), RenderMan in production: SIGGRAPH 2002 course 16 (pp. 87–100). New York: ACM. / RenderMan in production: SIGGRAPH 2002 course 16 by H. Landis (2002)
- Le Besnerais, G., & Champagnat, F. (2005). Dense optical flow by iterative local window registration. In Proceedings of the international conference on image processing (Vol. 1, pp. 137–140). / Proceedings of the international conference on image processing by G. Le Besnerais (2005)
- Lei, C., & Yang, Y. (2009). Optical flow estimation on coarse-to-fine region-trees using discrete optimization. In Proceedings of the IEEE international conference on computer vision.
- Lempitsky, V., Roth, S., & Rother, C. (2008). Fusion flow: discrete-continuous optimization for optical flow estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition.
-
Levoy, M. (1988). Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8(3), 29–37.
(
10.1109/38.511
) / IEEE Computer Graphics and Applications by M. Levoy (1988) - Li, Y., & Huttenlocher, D. (2008). Learning for optical flow using stochastic optimization. In Proceedings of the European conference on computer vision (Vol. 2, pp. 373–391). / Proceedings of the European conference on computer vision by Y. Li (2008)
-
Liu, C., Freeman, W., Adelson, E., & Weiss, Y. (2008). Human-assisted motion annotation. In Proceedings of the IEEE conference on computer vision and pattern recognition.
(
10.1109/CVPR.2008.4587845
) - Liu, C., Yuen, J., Torralba, A., Sivic, J., & Freeman, W. (2008). SIFT flow: dense correspondence across difference scenes. In Proceedings of the European conference on computer vision (Vol. 3, pp. 28–42). / Proceedings of the European conference on computer vision by C. Liu (2008)
- Lucas, B., & Kanade, T. (1981). An iterative image registration technique with an application in stereo vision. In Proceedings of the international joint conference on artificial intelligence (pp. 674–679). / Proceedings of the international joint conference on artificial intelligence by B. Lucas (1981)
-
Mahajan, D., Huang, F., Matusik, W., Ramamoorthi, R., & Belhumeur, P. (2009). Moving gradients: a path-based method for plausible image interpolation. In Annual conference series. ACM computer graphics, SIGGRAPH.
(
10.1145/1576246.1531348
) - Markandey, V., & Flinchbaugh, B. (1990). Multispectral constraints for optical flow computation. In Proceedings of the IEEE international conference on computer vision (pp. 38–41). / Proceedings of the IEEE international conference on computer vision by V. Markandey (1990)
-
McCane, B., Novins, K., Crannitch, D., & Galvin, B. (2001). On benchmarking optical flow. Computer Vision and Image Understanding, 84(1), 126–143.
(
10.1006/cviu.2001.0930
) / Computer Vision and Image Understanding by B. McCane (2001) -
Mitiche, A., & Bouthemy, P. (1996). Computation and analysis of image motion: a synopsis of current problems and methods. International Journal of Computer Vision, 19(1), 29–55.
(
10.1007/BF00131147
) / International Journal of Computer Vision by A. Mitiche (1996) - Mova LLC (2004). Contour reality capture. http://www.mova.com/ .
-
Murray, D., & Buxton, B. (1987). Scene segmentation from visual motion using global optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(2), 220–228.
(
10.1109/TPAMI.1987.4767896
) / IEEE Transactions on Pattern Analysis and Machine Intelligence by D. Murray (1987) -
Nagel, H.-H., & Enkelmann, W. (1986). An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(5), 565–593.
(
10.1109/TPAMI.1986.4767833
) / IEEE Transactions on Pattern Analysis and Machine Intelligence by H.-H. Nagel (1986) -
Negahdaripour, S. (1998). Revised definition of optical flow: integration of radiometric and geometric cues for dynamic scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(9), 961–979.
(
10.1109/34.713362
) / IEEE Transactions on Pattern Analysis and Machine Intelligence by S. Negahdaripour (1998) -
Nir, T., Bruckstein, A., & Kimmel, R. (2008). Over-parameterized variational optical flow. International Journal of Computer Vision, 76(2), 205–216.
(
10.1007/s11263-007-0051-2
) / International Journal of Computer Vision by T. Nir (2008) - Ohta, N. (1989). Optical flow detection by color images. In International conference on image processing (pp. 801–805). / International conference on image processing by N. Ohta (1989)
- Otte, M., & Nagel, H.-H. (1994). Optical flow estimation: advances and comparisons. In Proceedings of the European conference on computer vision (pp. 51–60). / Proceedings of the European conference on computer vision by M. Otte (1994)
- Philips, P., Scruggs, W., O’Toole, A., Flynn, P., Bowyer, K., Schott, C., & Sharpe, M. (2005). Overview of the face recognition grand challenge. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 947–954). / Proceedings of the IEEE conference on computer vision and pattern recognition by P. Philips (2005)
-
Pock, T., Pock, M., & Bischof, H. (2007). Algorithmic differentiation: application to variational problems in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7), 1180–1193.
(
10.1109/TPAMI.2007.1044
) / IEEE Transactions on Pattern Analysis and Machine Intelligence by T. Pock (2007) -
Pratt, W. (1974). Correlation techniques of image registration. IEEE Transactions on Aerospace and Electronic Systems, AES-10, 353–358.
(
10.1109/TAES.1974.307828
) / IEEE Transactions on Aerospace and Electronic Systems by W. Pratt (1974) -
Ramnath, K., Baker, S., Matthews, I., & Ramanan, D. (2008). Increasing the density of active appearance models. In Proceedings of the IEEE conference on computer vision and pattern recognition.
(
10.1109/CVPR.2008.4587517
) - Rannacher, J. (2009). Realtime 3D motion estimation on graphics hardware. Undergraduate thesis, Heidelberg University.
- Ren, X. (2008). Local grouping for optical flow. In Proceedings of the IEEE conference on computer vision and pattern recognition.
-
Roth, S., & Black, M. (2007). On the spatial statistics of optical flow. International Journal of Computer Vision, 74(1), 33–50.
(
10.1007/s11263-006-0016-x
) / International Journal of Computer Vision by S. Roth (2007) -
Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(13), 7–42.
(
10.1023/A:1014573219977
) / International Journal of Computer Vision by D. Scharstein (2002) - Scharstein, D., & Szeliski, R. (2003). High-accuracy stereo depth maps using structured light. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 195–202). / Proceedings of the IEEE conference on computer vision and pattern recognition by D. Scharstein (2003)
-
Seitz, S., & Baker, S. (2009). Filter flow. In Proceedings of the IEEE international conference on computer vision.
(
10.1109/ICCV.2009.5459155
) - Seitz, S., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 519–526). / Proceedings of the IEEE conference on computer vision and pattern recognition by S. Seitz (2006)
- Shade, J., Gortler, S., He, L.-W., & Szeliski, R. (1998). Layered depth images. In Annual conference series. ACM computer graphics, SIGGRAPH (pp. 231–242). / Annual conference series. ACM computer graphics, SIGGRAPH by J. Shade (1998)
-
Shizawa, M., & Mase, K. (1991). A unified computational theory for motion transparency and motion boundaries based on eigenenergy analysis. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 289–295).
(
10.1109/CVPR.1991.139704
) / Proceedings of the IEEE conference on computer vision and pattern recognition by M. Shizawa (1991) -
Sim, T., Baker, S., & Bsat, M. (2003). The CMU pose, illumination, and expression database. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), 1615–1618.
(
10.1109/TPAMI.2003.1251154
) / IEEE Transactions on Pattern Analysis and Machine Intelligence by T. Sim (2003) -
Stiller, C., & Konrad, J. (1999). Estimating motion in image sequences: a tutorial on modeling and computation of 2D motion. IEEE Signal Processing Magazine, 16(4), 70–91.
(
10.1109/79.774934
) / IEEE Signal Processing Magazine by C. Stiller (1999) - Sun, C. (1999). Fast optical flow using cross correlation and shortest-path techniques. In Proceedings of digital image computing: techniques and applications (pp. 143–148). / Proceedings of digital image computing: techniques and applications by C. Sun (1999)
-
Sun, J., Shum, H.-Y., & Zheng, N. (2003). Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7), 787–800.
(
10.1109/TPAMI.2003.1206509
) / IEEE Transactions on Pattern Analysis and Machine Intelligence by J. Sun (2003) - Sun, D., Roth, S., Lewis, J., & Black, M. (2008). Learning optical flow. In Proceedings of the European conference on computer vision (Vol. 3, pp. 83–97). / Proceedings of the European conference on computer vision by D. Sun (2008)
-
Sun, D., Roth, S., & Black, M. (2010). Secrets of optical flow estimation and their principles. In Proceedings of the IEEE conference on computer vision and pattern recognition.
(
10.1109/CVPR.2010.5539939
) -
Szeliski, R. (1999). Prediction error as a quality metric for motion and stereo. In Proceedings of the IEEE international conference on computer vision (pp. 781–788).
(
10.1109/ICCV.1999.790301
) / Proceedings of the IEEE international conference on computer vision by R. Szeliski (1999) - Tappen, M., Adelson, E., & Freeman, W. (2006). Estimating intrinsic component images using non-linear regression. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 1992–1999). / Proceedings of the IEEE conference on computer vision and pattern recognition by M. Tappen (2006)
- Trobin, W., Pock, T., Cremers, D., & Bischof, H. (2008). Continuous energy minimization via repeated binary fusion. In Proceedings of the European conference on computer vision (Vol. 4, pp. 677–690). / Proceedings of the European conference on computer vision by W. Trobin (2008)
-
Trobin, W., Pock, T., Cremers, D., & Bischof, H. (2008). An unbiased second-order prior for high-accuracy motion estimation. In Proceedings of pattern recognition, DAGM (pp. 396–405).
(
10.1007/978-3-540-69321-5_40
) / Proceedings of pattern recognition, DAGM by W. Trobin (2008) -
Valgaerts, L., Bruhn, A., & Weickert, J. (2008). A variational model for the joint recovery of the fundamental matrix and the optical flow. In Proceedings of pattern recognition, DAGM (pp. 314–324).
(
10.1007/978-3-540-69321-5_32
) / Proceedings of pattern recognition, DAGM by L. Valgaerts (2008) -
Vedula, S., Baker, S., Rander, P., Collins, R., & Kanade, T. (2005). Three-dimensional scene flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3), 475–480.
(
10.1109/TPAMI.2005.63
) / IEEE Transactions on Pattern Analysis and Machine Intelligence by S. Vedula (2005) -
Wang, J., & Adelson, E. (1993). Layered representation for motion analysis. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 361–366).
(
10.1109/CVPR.1993.341105
) / Proceedings of the IEEE conference on computer vision and pattern recognition by J. Wang (1993) -
Wedel, A., Pock, T., Braun, J., Franke, U., & Cremers, D. (2008). Duality TV-L1 flow with fundamental matrix prior. In Proceedings of image and vision computing, New Zealand.
(
10.1109/IVCNZ.2008.4762119
) - Wedel, A., Pock, T., Zach, C., Cremers, D., & Bischof, H. (2008). An improved algorithm for TV-L1 optical flow. In Proceedings of the Dagstuhl motion workshop.
-
Wedel, A., Cremers, D., Pock, T., & Bischof, H. (2009). Structure- and motion-adaptive regularization for high accuracy optic flow. In Proceedings of the IEEE international conference on computer vision.
(
10.1109/ICCV.2009.5459375
) -
Weiss, Y. (1997). Smoothness in layers: motion segmentation using nonparametric mixture estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 520–526).
(
10.1109/CVPR.1997.609375
) / Proceedings of the IEEE conference on computer vision and pattern recognition by Y. Weiss (1997) -
Werlberger, M., Trobin, W., Pock, T., Bischof, H., Wedel, A., & Cremers, D. (2009). Anisotropic Huber-L1 optical flow. In Proceedings of the British machine vision conference.
(
10.5244/C.23.108
) - Xu, L., Chen, J., & Jia, J. (2008). A segmentation based variational model for accurate optical flow estimation. In Proceedings of the European conference on computer vision (Vol. 1, pp. 671–684). / Proceedings of the European conference on computer vision by L. Xu (2008)
-
Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B., & Seidel, H.-P. (2009). Complementary optic flow. In Proceedings of seventh international workshop on energy minimization methods in computer vision and pattern recognition.
(
10.1007/978-3-642-03641-5_16
) -
Zitnick, C., Kang, S., Uyttendaele, M., Winder, S., & Szeliski, R. (2004). High-quality video view interpolation using a layered representation. In Annual conference series: Vol. 23(2). ACM computer graphics, SIGGRAPH (pp. 600–608).
(
10.1145/1186562.1015766
) / ACM computer graphics, SIGGRAPH / Annual conference series by C. Zitnick (2004)
Dates
Type | When |
---|---|
Created | 14 years, 8 months ago (Nov. 29, 2010, 4:15 p.m.) |
Deposited | 6 years, 2 months ago (June 6, 2019, 1:09 p.m.) |
Indexed | 1 day, 11 hours ago (Aug. 23, 2025, 1:06 a.m.) |
Issued | 14 years, 8 months ago (Nov. 30, 2010) |
Published | 14 years, 8 months ago (Nov. 30, 2010) |
Published Online | 14 years, 8 months ago (Nov. 30, 2010) |
Published Print | 14 years, 5 months ago (March 1, 2011) |
@article{Baker_2010, title={A Database and Evaluation Methodology for Optical Flow}, volume={92}, ISSN={1573-1405}, url={http://dx.doi.org/10.1007/s11263-010-0390-2}, DOI={10.1007/s11263-010-0390-2}, number={1}, journal={International Journal of Computer Vision}, publisher={Springer Science and Business Media LLC}, author={Baker, Simon and Scharstein, Daniel and Lewis, J. P. and Roth, Stefan and Black, Michael J. and Szeliski, Richard}, year={2010}, month=nov, pages={1–31} }