Crossref journal-article
Springer Science and Business Media LLC
Quantum Information Processing (297)
Bibliography

Klymko, C., Sullivan, B. D., & Humble, T. S. (2013). Adiabatic quantum programming: minor embedding with hard faults. Quantum Information Processing, 13(3), 709–729.

Authors 3
  1. Christine Klymko (first)
  2. Blair D. Sullivan (additional)
  3. Travis S. Humble (additional)
References 25 Referenced 70
  1. Adler, I., et al.: Faster parameterized algorithms for minor containment. Theor. Comput. Sci. 412, 7018–7028 (2011) (10.1016/j.tcs.2011.09.015) / Theor. Comput. Sci. by I Adler (2011)
  2. Altshuler, B., Karvi, H., Roland, J.: Anderson localization makes adiabatic quantum optimization fail. Proc. Natl. Acad. Sci. USA 108, E19–E20 (2011) (10.1073/pnas.1018310108) / Proc. Natl. Acad. Sci. USA by B Altshuler (2011)
  3. Amir, E.: Approximation algorithms for treewidth. Algorithmica 56, 448–479 (2010) (10.1007/s00453-008-9180-4) / Algorithmica by E Amir (2010)
  4. Bian, Z., Chudak, F., Macready, W.G., Clark, L., Gaitan, F.: Experimental determination of Ramsey numbers. Phys. Rev. Lett. 111, 130505 (2013) (10.1103/PhysRevLett.111.130505)
  5. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11, 1–23 (1993) / Acta Cybern. by HL Bodlaender (1993)
  6. Bodlaender, H.L.: A linear-time algorithm for finding tree decompositions of small treewidth. SIAM J. Comput. 25, 1035–1317 (1996) (10.1137/S0097539793251219) / SIAM J. Comput. by HL Bodlaender (1996)
  7. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth Computations II. Lower Bounds, Technical Report UU-CS-2010-022. Department of Information and Computing Sciences, Utrecht University (2010)
  8. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discret. Appl. Math. 123, 155–225 (2002) (10.1016/S0166-218X(01)00341-9) / Discret. Appl. Math. by E Boros (2002)
  9. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7, 193–209 (2008) (10.1007/s11128-008-0082-9) / Quantum Inf. Process. by V Choi (2008)
  10. Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10, 343–353 (2011) (10.1007/s11128-010-0200-3) / Quantum Inf. Process. by V Choi (2011)
  11. Dickson, N.G., Amin, M.H.S.: Does adiabatic quantum optimization fail for NP-complete problems? Phys. Rev. Lett. 106, 050502 (2011) (10.1103/PhysRevLett.106.050502)
  12. Dickson, N.G., Amin, M.H.S.: Algorithmic approach to adiabatic quantum optimization. Phys. Rev. A 85, 032303 (2012) (10.1103/PhysRevA.85.032303)
  13. Diestel, R.: Graph Theory. Springer, Heidelberg (2005) / Graph Theory by R Diestel (2005)
  14. D-Wave Systems Inc., 100–4401 Still Creek Drive, Burnaby V5C 6G9, BC, Canada. http://www.dwavesys.com/
  15. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution, arxiv:quant-ph/0001106 (2000)
  16. Farhi, E., et al.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–476 (2001) (10.1126/science.1057726) / Science by E Farhi (2001)
  17. Fomin, F.V., Thilikos, D.M.: Dominating sets and local treewidth. LNCS 2832, 221–229 (2003) / LNCS by FV Fomin (2003)
  18. Gaitan, F., Clark, L.: Ramsey numbers and adiabatic quantum computing. Phys. Rev. Lett. 108, 010501 (2012) (10.1103/PhysRevLett.108.010501)
  19. Harris, R., et al.: Experimental investigation of an eight qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511–024526 (2010) (10.1103/PhysRevB.82.024511) / Phys. Rev. B by R Harris (2010)
  20. Kleinberg, J., Rubinfeld, R.: Short paths in expander graphs. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pp. 86–95 (1996) (10.1109/SFCS.1996.548467)
  21. Neven, H., Rose, G., Macready, W.G.: Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization, arXiv:0804.4457v1 [quant-ph] (2008)
  22. Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.: Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2, 571 (2012) (10.1038/srep00571)
  23. Pudenz, K.L., Lidar, D.A.: Quantum adiabatic machine learning. Quantum Inf. Process. 12, 2027–2070 (2012) (10.1007/s11128-012-0506-4)
  24. Robertson, N., Seymour, P.D.: Graph minors. XIII: the disjoint paths problem. J. Comb. Theory Ser. B 63, 65–110 (1995) (10.1006/jctb.1995.1006) / J. Comb. Theory Ser. B by N Robertson (1995)
  25. Xiong, L., Dinneen, M.J.: The Feasibility and Use of a Minor Containment Algorithm, Computer Science Technical Reports 171, University of Auckland (2000)
Dates
Type When
Created 11 years, 9 months ago (Nov. 19, 2013, 4:48 a.m.)
Deposited 6 years, 2 months ago (June 1, 2019, 3:39 a.m.)
Indexed 3 weeks, 2 days ago (Aug. 6, 2025, 8:53 a.m.)
Issued 11 years, 9 months ago (Nov. 20, 2013)
Published 11 years, 9 months ago (Nov. 20, 2013)
Published Online 11 years, 9 months ago (Nov. 20, 2013)
Published Print 11 years, 5 months ago (March 1, 2014)
Funders 0

None

@article{Klymko_2013, title={Adiabatic quantum programming: minor embedding with hard faults}, volume={13}, ISSN={1573-1332}, url={http://dx.doi.org/10.1007/s11128-013-0683-9}, DOI={10.1007/s11128-013-0683-9}, number={3}, journal={Quantum Information Processing}, publisher={Springer Science and Business Media LLC}, author={Klymko, Christine and Sullivan, Blair D. and Humble, Travis S.}, year={2013}, month=nov, pages={709–729} }