Crossref
journal-article
Springer Science and Business Media LLC
Quantum Information Processing (297)
References
44
Referenced
131
-
Aharonov Y., Davidovich L., Zagury N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)
(
10.1103/PhysRevA.48.1687) / Phys. Rev. A by Y. Aharonov (1993) - Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44, 307 (2003). http://www.tandfonline.com/doi/pdf/10.1080/00107151031000110776
-
Farhi E., Gutmann S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)
(
10.1103/PhysRevA.58.915) / Phys. Rev. A by E. Farhi (1998) -
Kitagawa T., Rudner M.S., Berg E., Demler E.: Exploring topological phases with quantum walks. Phys. Rev. A 82, 033429 (2010)
(
10.1103/PhysRevA.82.033429) / Phys. Rev. A by T. Kitagawa (2010) -
Kitagawa, T., et al.: Observation of topologically protected bound states in a one dimensional photonic system. arXiv/1105.5334 (2011)
(
10.1109/CLEOE.2011.5943396) -
Zähringer F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)
(
10.1103/PhysRevLett.104.100503) / Phys. Rev. Lett. by F. Zähringer (2010) - Karski, M., et al.: Quantum walk in position space with single optically trapped atoms. Science 325, 174 (2009). http://www.sciencemag.org/content/325/5937/174.full.pdf
-
Schreiber A., et al.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010)
(
10.1103/PhysRevLett.104.050502) / Phys. Rev. Lett. by A., et al. Schreiber (2010) -
Broome M.A. et al.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010)
(
10.1103/PhysRevLett.104.153602) / Phys. Rev. Lett. by M.A. Broome (2010) -
Biane, P., et al.: Quantum walks. In: Quantum Potential Theory, Lecture Notes in Mathematics, vol. 1954, pp. 309–452. Springer, Berlin, Heidelberg (2008)
(
10.1007/978-3-540-69365-9_7) -
Grimmett G., Janson S., Scudo P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)
(
10.1103/PhysRevE.69.026119) / Phys. Rev. E by G. Grimmett (2004) -
Ryu S., Hatsugai Y.: Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys. Rev. Lett. 89, 077002 (2002)
(
10.1103/PhysRevLett.89.077002) / Phys. Rev. Lett. by S. Ryu (2002) -
Oka T., Konno N., Arita R., Aoki H.: Breakdown of an electric-field driven system: a mapping to a quantum walk. Phys. Rev. Lett. 94, 100602 (2005)
(
10.1103/PhysRevLett.94.100602) / Phys. Rev. Lett. by T. Oka (2005) -
Rudner M.S., Levitov L.S.: Topological transition in a non-hermitian quantum walk. Phys. Rev. Lett. 102, 065703 (2009)
(
10.1103/PhysRevLett.102.065703) / Phys. Rev. Lett. by M.S. Rudner (2009) -
von Klitzing K., Dorda G., Pepper M.: New method for high-accuracy determination of the finestructure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494 (1980)
(
10.1103/PhysRevLett.45.494) / Phys. Rev. Lett. by K. Klitzing von (1980) - MacDonald, A.H.: Introduction to the physics of the quantum hall regime: quantized hall conductance in a two-dimensional periodic potential. eprint arXiv:cond-mat/9410047 (1994)
-
Thouless D.J., Kohmoto M., Nightingale M.P., den Nijs M.: Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)
(
10.1103/PhysRevLett.49.405) / Phys. Rev. Lett. by D.J. Thouless (1982) -
Halperin B.I.: Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185 (1982)
(
10.1103/PhysRevB.25.2185) / Phys. Rev. B by B.I. Halperin (1982) -
Hasan M.Z., Kane C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)
(
10.1103/RevModPhys.82.3045) / Rev. Mod. Phys. by M.Z. Hasan (2010) -
Qi X.-L., Zhang S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)
(
10.1103/RevModPhys.83.1057) / Rev. Mod. Phys. by X.-L. Qi (2011) -
Su W.P., Schrieffer J.R., Heeger A.J.: Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698 (1979)
(
10.1103/PhysRevLett.42.1698) / Phys. Rev. Lett. by W.P. Su (1979) -
Jackiw R., Rebbi C.: Solitons with fermion number. Phys. Rev. D 13, 3398 (1976)
(
10.1103/PhysRevD.13.3398) / Phys. Rev. D by R. Jackiw (1976) -
Jackiw R., Schrieffer J.: Solitons with fermion number 12 in condensed matter and relativistic field theories. Nuclear Physics B 190, 253 (1981)
(
10.1016/0550-3213(81)90557-5) / Nuclear Physics B by R. Jackiw (1981) -
Kane C.L., Mele E.J.: Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)
(
10.1103/PhysRevLett.95.226801) / Phys. Rev. Lett. by C.L. Kane (2005) - Bernevig, B.A., Hughes, T.L., Zhang, S.-C.: Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757 (2006). http://www.sciencemag.org/content/314/5806/1757.full.pdf
- Konig, M., et al.: Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766 (2007). http://www.sciencemag.org/content/318/5851/766.full.pdf
-
Fu L., Kane C.L., Mele E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)
(
10.1103/PhysRevLett.98.106803) / Phys. Rev. Lett. by L. Fu (2007) - Chen, Y.L., et al.: Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178 (2009). http://www.sciencemag.org/content/325/5937/178.full.pdf
-
Xia Y. et al.: Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398 (2009)
(
10.1038/nphys1274) / Nat. Phys. by Y. Xia (2009) -
Schnyder A.P., Ryu S., Furusaki A., Ludwig A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008)
(
10.1103/PhysRevB.78.195125) / Phys. Rev. B by A.P. Schnyder (2008) -
Qi X.-L., Hughes T.L., Zhang S.-C.: Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008)
(
10.1103/PhysRevB.78.195424) / Phys. Rev. B by X.-L. Qi (2008) -
Kitaev, A.: Periodic table for topological insulators and superconductors. In: Lebedev V., Feigel’Man, M. (eds.) American Institute of Physics Conference Series, vol. 1134, pp. 22–30 (2009)
(
10.1063/1.3149495) -
Wang Z., Chong Y., Joannopoulos J.D., Soljacic M.: Observation of unidirectional backscattering–immune topological electromagnetic states. Nature 461, 772 (2009)
(
10.1038/nature08293) / Nature by Z. Wang (2009) -
Kitagawa T., Berg E., Rudner M., Demler E.: Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010)
(
10.1103/PhysRevB.82.235114) / Phys. Rev. B by T. Kitagawa (2010) -
Jiang L. et al.: Majorana Fermions in equilibrium and in driven cold-atom quantum wires. Phys. Rev. Lett. 106, 220402 (2011)
(
10.1103/PhysRevLett.106.220402) / Phys. Rev. Lett. by L. Jiang (2011) -
Sørensen A.S., Demler E., Lukin M.D.: Fractional quantum hall states of atoms in optical lattices. Phys. Rev. Lett. 94, 086803 (2005)
(
10.1103/PhysRevLett.94.086803) / Phys. Rev. Lett. by A.S. Sørensen (2005) -
Zhu S.-L., Fu H., Wu C.-J., Zhang S.-C., Duan L.-M.: Spin hall effects for cold atoms in a light-induced gauge potential. Phys. Rev. Lett. 97, 240401 (2006)
(
10.1103/PhysRevLett.97.240401) / Phys. Rev. Lett. by S.-L. Zhu (2006) -
Jaksch D., Zoller P.: Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. N. J. Phys. 5, 56 (2003)
(
10.1088/1367-2630/5/1/356) / N. J. Phys. by D. Jaksch (2003) -
Osterloh K., Baig M., Santos L., Zoller P., Lewenstein M.: Cold atoms in non-abelian gauge potentials: from the hofstadter “Moth” to lattice gauge theory. Phys. Rev. Lett. 95, 010403 (2005)
(
10.1103/PhysRevLett.95.010403) / Phys. Rev. Lett. by K. Osterloh (2005) - Kitagawa, T.: Wolfram Demonstration: topological phases with quantum walks. http://demonstrations.wolfram.com/TopologicalPhasesWithQuantumWalks/
-
Thouless D.J.: Quantization of particle transport. Phys. Rev. B 27, 6083 (1983)
(
10.1103/PhysRevB.27.6083) / Phys. Rev. B by D.J. Thouless (1983) -
Obuse H., Kawakami N.: Topological phases and delocalization of quantum walks in random environments. Phys. Rev. B 84, 195139 (2011)
(
10.1103/PhysRevB.84.195139) / Phys. Rev. B by H. Obuse (2011) - Kitagawa, T., Oka, T., Demler, E.: Photo control of transport properties in disorderd wire; average conductance, conductance statistics, and time-reversal symmetry. WolframDemonstration: topological phases with quantum walks. ArXiv e-prints (2012). 1201.0521
-
Moore J.E., Ran Y., Wen X.-G.: Topological surface states in three-dimensional magnetic insulators. Phys. Rev. Lett. 101, 186805 (2008)
(
10.1103/PhysRevLett.101.186805) / Phys. Rev. Lett. by J.E. Moore (2008)
Dates
| Type | When |
|---|---|
| Created | 13 years ago (Aug. 3, 2012, 5:21 a.m.) |
| Deposited | 6 years, 1 month ago (July 2, 2019, 8:52 a.m.) |
| Indexed | 3 weeks, 5 days ago (Aug. 6, 2025, 9:09 a.m.) |
| Issued | 13 years ago (Aug. 4, 2012) |
| Published | 13 years ago (Aug. 4, 2012) |
| Published Online | 13 years ago (Aug. 4, 2012) |
| Published Print | 12 years, 11 months ago (Oct. 1, 2012) |
@article{Kitagawa_2012, title={Topological phenomena in quantum walks: elementary introduction to the physics of topological phases}, volume={11}, ISSN={1573-1332}, url={http://dx.doi.org/10.1007/s11128-012-0425-4}, DOI={10.1007/s11128-012-0425-4}, number={5}, journal={Quantum Information Processing}, publisher={Springer Science and Business Media LLC}, author={Kitagawa, Takuya}, year={2012}, month=aug, pages={1107–1148} }