Crossref journal-article
Springer Science and Business Media LLC
Journal of Materials Science: Materials in Medicine (297)
Bibliography

Huang, W., Wang, W., Wang, P., Zhang, C.-N., Tian, Q., Zhang, Y., Wang, X.-H., Cha, R.-T., Wang, C.-H., & Yuan, Z. (2011). Glycyrrhetinic acid-functionalized degradable micelles as liver-targeted drug carrier. Journal of Materials Science: Materials in Medicine, 22(4), 853–863.

Authors 10
  1. Wei Huang (first)
  2. Wei Wang (additional)
  3. Ping Wang (additional)
  4. Chuang-Nian Zhang (additional)
  5. Qin Tian (additional)
  6. Yue Zhang (additional)
  7. Xiu-Hua Wang (additional)
  8. Rui-Tao Cha (additional)
  9. Chun-Hong Wang (additional)
  10. Zhi Yuan (additional)
References 51 Referenced 26
  1. Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp. 1975;51:135–53. (10.1002/polc.5070510111) / J Polym Sci Polym Symp by H Ringsdorf (1975)
  2. Soussan E, Cassel S, Blanzat M, et al. Drug delivery by soft matter: matrix and vesicular carriers. Angew Chem Int Ed. 2009;48:274–88. (10.1002/anie.200802453) / Angew Chem Int Ed by E Soussan (2009)
  3. Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32:962–90. (10.1016/j.progpolymsci.2007.05.009) / Prog Polym Sci by N Rapoport (2007)
  4. Meng FH, Zhong ZY, Jan FJ. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules. 2009;10:197–209. (10.1021/bm801127d) / Biomacromolecules by FH Meng (2009)
  5. Nie Y, Zhang ZR, Li L, et al. Synthesis, characterization and transfection of a novel folate-targeted multipolymeric nanoparticles for gene delivery. J Mater Sci Mater Med. 2009;20:1849–57. (10.1007/s10856-009-3750-0) / J Mater Sci Mater Med by Y Nie (2009)
  6. Chen ZN, Mi L, Xu J, et al. Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (I-131) metuximab injection: clinical phase I/II trials. Int J Radiat Oncol. 2006;65:435–44. (10.1016/j.ijrobp.2005.12.034) / Int J Radiat Oncol by ZN Chen (2006)
  7. Petrak K. Essential properties of drug-targeting delivery systems. Drug Discov Today. 2005;10:1667–73. (10.1016/S1359-6446(05)03698-6) / Drug Discov Today by K Petrak (2005)
  8. Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 2002;54:169–90. (10.1016/S0169-409X(02)00015-7) / Adv Drug Deliv Rev by A Lavasanifar (2002)
  9. Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces. 1999;16:3–27. (10.1016/S0927-7765(99)00058-2) / Colloids Surf B Biointerfaces by C Allen (1999)
  10. Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev. 2002;54:203–22. (10.1016/S0169-409X(02)00017-0) / Adv Drug Deliv Rev by Y Kakizawa (2002)
  11. Harada A, Kataoka K. Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications. Prog Polym Sci. 2006;31:949–82. (10.1016/j.progpolymsci.2006.09.004) / Prog Polym Sci by A Harada (2006)
  12. Haag R. Supermolecular drug-delivery systems based on polymeric core-shell architectures. Angew Chem Int Ed. 2004;43:278–82. (10.1002/anie.200301694) / Angew Chem Int Ed by R Haag (2004)
  13. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2:750–63. (10.1038/nrc903) / Nat Rev Cancer by TM Allen (2002)
  14. Sutton D, Nasongkla N, Blanco E, et al. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24:1029–46. (10.1007/s11095-006-9223-y) / Pharm Res by D Sutton (2007)
  15. Morell AG, Irvine RA, Sternlieb I, Scheinberg IH. Physical and chemical studies on ceruloplasmin. Metabolic studies on sialic acid-free ceruloplasmin in vivo. J Biol Chem. 1968;243:155–9. (10.1016/S0021-9258(18)99337-3) / J Biol Chem by AG Morell (1968)
  16. Liang HF, Chen CT, Chen SC, et al. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials. 2006;27:2051–9. (10.1016/j.biomaterials.2005.10.027) / Biomaterials by HF Liang (2006)
  17. Zhang J, Zhang QS, Chen XM, et al. Synthesis of a targeting drug for antifibrosis of liver; a conjugate for delivering glycyrrhetin to hepatic stellate cells. Glycoconj J. 2003;19:423–9. (10.1023/B:GLYC.0000004014.89506.22) / Glycoconj J by J Zhang (2003)
  18. Zhang YL, Wu Y, Yang WL, et al. Preparation, characterization, and drug release in vitro of chitosan-glycyrrhetic acid nanoparticles. J Pharm Sci. 2006;95:181–91. (10.1002/jps.20399) / J Pharm Sci by YL Zhang (2006)
  19. Negishi M, Irie A, Nagata N, et al. Specific binding of glycyrrhetinic acid to the rat liver membrane. Biochim Biophys Acta. 1991;1066:77–82. (10.1016/0005-2736(91)90253-5) / Biochim Biophys Acta by M Negishi (1991)
  20. Ismair MG, Stanca C, Ha HR, et al. Interactions of glycyrrhizin with organic anion transporting polypeptides of rat and human liver. Hepatol Res. 2003;26:343–7. (10.1016/S1386-6346(03)00154-2) / Hepatol Res by MG Ismair (2003)
  21. Zha RT, He XT, Du T, et al. Synthesis and Characterization of chitosan nanoparticles modified by glycyrrhetinic acid as a liver targeting drug carrier. Chem J Chin U. 2007;28:1098–100. / Chem J Chin U by RT Zha (2007)
  22. Tsuji H, Osaka S, Kiwada H. Targeting of liposomes surface-modified with glycyrrhizin to the liver. I. Preparation and biological disposition. Chem Pharm Bull. 1991;39:1004–8. (10.1248/cpb.39.1004) / Chem Pharm Bull by H Tsuji (1991)
  23. Tian Q, Wang XH, Wang W, et al. Insight into glycyrrhetinic acid: the role of the hydroxyl group on liver targeting. Int J Pharm. 2010;400:153–7. (10.1016/j.ijpharm.2010.08.032) / Int J Pharm by Q Tian (2010)
  24. Tian Q, Zhang CN, Wang XH, et al. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials. 2010;31:4748–56. (10.1016/j.biomaterials.2010.02.042) / Biomaterials by Q Tian (2010)
  25. Lin AH, Liu YM, Huang Y, et al. Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. Int J Pharm. 2008;359:247–53. (10.1016/j.ijpharm.2008.03.039) / Int J Pharm by AH Lin (2008)
  26. Mao SJ, Bi YQ, Jin H, et al. Preparation, characterization and uptake by primary cultured rat hepatocytes of liposomes surface-modified with glycyrrhetinic acid. Pharmazie. 2007;62:614–9. / Pharmazie by SJ Mao (2007)
  27. Cha RT, Du T, Li JH, et al. Synthesis and characterization of polypeptide containing liver-targeting group. Polym Int. 2006;55:1057–62. (10.1002/pi.2051) / Polym Int by RT Cha (2006)
  28. Daly WH, Phche D. The preparation of N-carboxyanhydrides of α-amino acids using bis(trichloromethyl) carbonate. Tetrahedron Lett. 1998;29:5859–62. (10.1016/S0040-4039(00)82209-1) / Tetrahedron Lett by WH Daly (1998)
  29. Van-Steenis JH, van Maarseveen EM, Verbaan FJ, et al. Preparation and characterization of folate-targeted pEG-coated pDMAEMA-based polymers. J Control Release. 2003;87:167–76. (10.1016/S0168-3659(02)00361-9) / J Control Release by JH Van-Steenis (2003)
  30. Barbosa MEM, Montembault V, Cammas-Marion S, et al. Synthesis and characterization of novel poly(γ-benzyl-l-glutamate) derivatives tailored for the preparation of nanoparticles of pharmaceutical interest. Polym Int. 2007;56:317–24. (10.1002/pi.2133) / Polym Int by MEM Barbosa (2007)
  31. Vey E, Roger C, Meehan L, et al. Degradation mechanism of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Polym Degrad Stab. 2008;93:1869–76. (10.1016/j.polymdegradstab.2008.07.018) / Polym Degrad Stab by E Vey (2008)
  32. Jeong YI, Nah JW, Lee HC, et al. Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Int J Pharm. 1999;188:49–58. (10.1016/S0378-5173(99)00202-1) / Int J Pharm by YI Jeong (1999)
  33. Huang CK, Lo CL, Chen HH, et al. Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery. Adv Funct Mater. 2007;17:2291–7. (10.1002/adfm.200600818) / Adv Funct Mater by CK Huang (2007)
  34. Peppas NA. A model of dissolution-controlled solute release from porous drug delivery polymeric systems. J Biomed Mater Res. 1983;17:1079–87. (10.1002/jbm.820170615) / J Biomed Mater Res by NA Peppas (1983)
  35. Kim D, Gao ZG, Lee ES, et al. In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. Mol Pharm. 2009;6:1353–62. (10.1021/mp900021q) / Mol Pharm by D Kim (2009)
  36. Segura-Sánchez F, Montembault V, Fontaine L, et al. Synthesis and characterization of functionalized poly(γ-benzyl-l-glutamate) derivates and corresponding nanoparticles preparation and characterization. Int J Pharm. 2010;387:244–52. (10.1016/j.ijpharm.2009.12.016) / Int J Pharm by F Segura-Sánchez (2010)
  37. Martinez-Barbosa ME, Cammas-Marion S, Bouteiller L, et al. PEGylated degradable composite nanoparticles based on mixtures of PEG-b-Poly(γ-benzyl l-glutamate) and poly(γ-benzyl l-glutamate). Bioconjug Chem. 2009;20:1490–6. (10.1021/bc900017c) / Bioconjug Chem by ME Martinez-Barbosa (2009)
  38. Jeong YI, Na HS, Cho KO, et al. Antitumor activity of adriamycin-incorporated polymeric micelles of poly(γ-benzyl l-glutamate)/poly(ethylene oxide). Int J Pharm. 2009;365:150–6. (10.1016/j.ijpharm.2008.08.011) / Int J Pharm by YI Jeong (2009)
  39. He Q, Yuan WM, Liu J, et al. Study on in vivo distribution of liver-targeting nanoparticles encapsulating thymidine kinase gene (TK gene) in mice. J Mater Sci Mater Med. 2008;19:559–65. (10.1007/s10856-007-3182-7) / J Mater Sci Mater Med by Q He (2008)
  40. Wu DQ, Lu B, Chang C, et al. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier. Biomaterials. 2009;30:1363–71. (10.1016/j.biomaterials.2008.11.027) / Biomaterials by DQ Wu (2009)
  41. Stockert RJ, Morell AG. Hepatic binding protein: the galactose-sepcific receptor of mammalian hepatocytes. Hepatology. 1983;3:750–7. (10.1002/hep.1840030520) / Hepatology by RJ Stockert (1983)
  42. Upadhyay KK, Bhatt AN, Mishra AK, et al. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials. 2010;31:2882–92. (10.1016/j.biomaterials.2009.12.043) / Biomaterials by KK Upadhyay (2010)
  43. Zweers MLT, Engbers GHM, Grijpma DW, et al. In vitro degradation of nanoparticles prepared from polymers based on dl-lactide, glycolide and poly(ethylene oxide). J Control Release. 2004;100:347–56. (10.1016/j.jconrel.2004.09.008) / J Control Release by MLT Zweers (2004)
  44. Kataoka K, Matsumoto T, Yokoyama M, et al. Doxorubicin-loaded poly(ethylene glycol)-poly (β-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release. 2000;64:143–53. (10.1016/S0168-3659(99)00133-9) / J Control Release by K Kataoka (2000)
  45. Li YY, Zhang XZ, Cheng H, et al. Novel stimuli-responsive micelle self-assembled from Y-shaped P(UA-Y-NIPAAm) copolymer for drug delivery. Biomacromolecules. 2006;7:2956–60. (10.1021/bm060080k) / Biomacromolecules by YY Li (2006)
  46. Shuai XT, Ai H, Nasongkla N, et al. Micellar carriers based on block copolymers of poly(ε- caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release. 2004;98:415–26. (10.1016/j.jconrel.2004.06.003) / J Control Release by XT Shuai (2004)
  47. Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364:328–43. (10.1016/j.ijpharm.2008.09.004) / Int J Pharm by J Siepmann (2008)
  48. Shiah JG, Dvořák M, Kopečková P, et al. Biodistribution and antitumour efficacy of long- circulating N-(2-hydroxypropyl) methacrylamide copolymer-doxorubicin conjugates in nude mice. Eur J Cancer. 2001;37:131–9. (10.1016/S0959-8049(00)00374-9) / Eur J Cancer by JG Shiah (2001)
  49. Zunino F, Marco AD, Zaccara A, Gambetta RA. The interaction of daunorubicin and doxorubicin with DNA and chromatin. Biochim Biophys Acta. 1980;607:206–14. (10.1016/0005-2787(80)90073-8) / Biochim Biophys Acta by F Zunino (1980)
  50. Itsubo M, Ishikawa T, Toda G, et al. Immunohistochemical study of expression and cellular localization of the multidrug resistance gene product P-glycoprotein in primary liver carcinoma. Cancer. 1994;72:298–303. (10.1002/1097-0142(19940115)73:2<298::AID-CNCR2820730211>3.0.CO;2-4) / Cancer by M Itsubo (1994)
  51. Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release. 2004;96:273–83. (10.1016/j.jconrel.2004.02.003) / J Control Release by HS Yoo (2004)
Dates
Type When
Created 14 years, 5 months ago (March 4, 2011, 11:59 p.m.)
Deposited 3 years, 9 months ago (Nov. 19, 2021, 3:53 p.m.)
Indexed 1 month, 3 weeks ago (July 7, 2025, 3:27 p.m.)
Issued 14 years, 5 months ago (March 4, 2011)
Published 14 years, 5 months ago (March 4, 2011)
Published Online 14 years, 5 months ago (March 4, 2011)
Published Print 14 years, 5 months ago (April 1, 2011)
Funders 0

None

@article{Huang_2011, title={Glycyrrhetinic acid-functionalized degradable micelles as liver-targeted drug carrier}, volume={22}, ISSN={1573-4838}, url={http://dx.doi.org/10.1007/s10856-011-4262-2}, DOI={10.1007/s10856-011-4262-2}, number={4}, journal={Journal of Materials Science: Materials in Medicine}, publisher={Springer Science and Business Media LLC}, author={Huang, Wei and Wang, Wei and Wang, Ping and Zhang, Chuang-Nian and Tian, Qin and Zhang, Yue and Wang, Xiu-Hua and Cha, Rui-Tao and Wang, Chun-Hong and Yuan, Zhi}, year={2011}, month=mar, pages={853–863} }