Crossref journal-article
Springer Science and Business Media LLC
Glycoconjugate Journal (297)
Bibliography

Paila, Y. D., & Chattopadhyay, A. (2008). The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction? Glycoconjugate Journal, 26(6), 711–720.

Authors 2
  1. Yamuna Devi Paila (first)
  2. Amitabha Chattopadhyay (additional)
References 88 Referenced 89
  1. Lee, A.G.: Lipid–protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40 (2003). doi: 10.1016/S0005-2736(03)00056-7 (10.1016/S0005-2736(03)00056-7) / Biochim. Biophys. Acta by A.G. Lee (2003)
  2. Palsdottir, H., Hunte, C.: Lipids in membrane protein structures. Biochim. Biophys. Acta 1666, 2–18 (2004). doi: 10.1016/j.bbamem.2004.06.012 (10.1016/j.bbamem.2004.06.012) / Biochim. Biophys. Acta by H. Palsdottir (2004)
  3. Lee, A.G.: How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87 (2004). doi: 10.1016/j.bbamem.2004.05.012 (10.1016/j.bbamem.2004.05.012) / Biochim. Biophys. Acta by A.G. Lee (2004)
  4. Liscum, L., Underwood, K.W.: Intracellular cholesterol transport and compartmentation. J. Biol. Chem. 270, 15443–15446 (1995). doi: 10.1074/jbc.270.26.15443 (10.1074/jbc.270.26.15443) / J. Biol. Chem. by L. Liscum (1995)
  5. Simons, K., Ikonen, E.: How cells handle cholesterol. Science 290, 1721–1725 (2000). doi: 10.1126/science.290.5497.1721 (10.1126/science.290.5497.1721) / Science by K. Simons (2000)
  6. Schroeder, F., Woodford, J.K., Kavecansky, J., Wood, W.G., Joiner, C.: Cholesterol domains in biological membranes. Mol. Membr. Biol. 12, 113–119 (1995). doi: 10.3109/09687689509038505 (10.3109/09687689509038505) / Mol. Membr. Biol. by F. Schroeder (1995)
  7. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–572 (1997). doi: 10.1038/42408 (10.1038/42408) / Nature by K. Simons (1997)
  8. Xu, X., London, E.: The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39, 843–849 (2000). doi: 10.1021/bi992543v (10.1021/bi992543v) / Biochemistry by X. Xu (2000)
  9. Simons, K., van Meer, G.: Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202 (1988). doi: 10.1021/bi00417a001 (10.1021/bi00417a001) / Biochemistry by K. Simons (1988)
  10. Simons, K., Toomre, D.: Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000). doi: 10.1038/35036052 (10.1038/35036052) / Nat. Rev. Mol. Cell Biol. by K. Simons (2000)
  11. Simons, K., Ehehalt, R.: Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597–603 (2002) (10.1172/JCI0216390) / J. Clin. Invest. by K. Simons (2002)
  12. Pucadyil, T.J., Chattopadhyay, A.: Cholesterol: a potential therapeutic target in Leishmania infection. Trends Parasitol. 23, 49–53 (2007). doi: 10.1016/j.pt.2006.12.003 (10.1016/j.pt.2006.12.003) / Trends Parasitol. by T.J. Pucadyil (2007)
  13. Burger, K., Gimpl, G., Fahrenholz, F.: Regulation of receptor function by cholesterol. Cell. Mol. Life Sci. 57, 1577–1592 (2000). doi: 10.1007/PL00000643 (10.1007/PL00000643) / Cell. Mol. Life Sci. by K. Burger (2000)
  14. Pucadyil, T.J., Chattopadhyay, A.: Role of cholesterol in the function and organization of G-protein coupled receptors. Prog. Lipid Res. 45, 295–333 (2006). doi: 10.1016/j.plipres.2006.02.002 (10.1016/j.plipres.2006.02.002) / Prog. Lipid Res. by T.J. Pucadyil (2006)
  15. Pierce, K.L., Premont, R.T., Lefkowitz, R.J.: Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002). doi: 10.1038/nrm908 (10.1038/nrm908) / Nat. Rev. Mol. Cell Biol. by K.L. Pierce (2002)
  16. Kroeze, W.K., Sheffler, D.J., Roth, B.L.: G-protein-coupled receptors at a glance. J. Cell Sci. 116, 4867–4869 (2003). doi: 10.1242/jcs.00902 (10.1242/jcs.00902) / J. Cell Sci. by W.K. Kroeze (2003)
  17. Perez, D.M.: The evolutionarily triumphant G-protein-coupled receptor. Mol. Pharmacol. 63, 1202–1205 (2003). doi: 10.1124/mol.63.6.1202 (10.1124/mol.63.6.1202) / Mol. Pharmacol. by D.M. Perez (2003)
  18. Gether, U.: Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21, 90–113 (2000). doi: 10.1210/er.21.1.90 (10.1210/edrv.21.1.0390) / Endocr. Rev. by U. Gether (2000)
  19. Fredriksson, R., Schiöth, H.B.: The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol. Pharmacol. 67, 1414–1425 (2005). doi: 10.1124/mol.104.009001 (10.1124/mol.104.009001) / Mol. Pharmacol. by R. Fredriksson (2005)
  20. Nature reviews drug discovery GPCR questionnaire participants, The state of GPCR research in 2004. Nat. Rev. Drug Discov. 3, 577–626 (2004). doi: 10.1038/nrd1458 (10.1038/nrd1458)
  21. Schlyer, S., Horuk, R.: I want a new drug: G-protein-coupled receptors in drug development. Drug Discov. Today 11, 481–493 (2006). doi: 10.1016/j.drudis.2006.04.008 (10.1016/j.drudis.2006.04.008) / Drug Discov. Today by S. Schlyer (2006)
  22. Jacoby, E., Bouhelal, R., Gerspacher, M., Seuwen, K.: The 7TM G-protein-coupled receptor target family. ChemMedChem 1, 760–782 (2006). doi: 10.1002/cmdc.200600134 (10.1002/cmdc.200600134) / ChemMedChem by E. Jacoby (2006)
  23. Insel, P.A., Tang, C.M., Hahntow, I., Michel, M.C.: Impact of GPCRs in clinical medicine: monogenic diseases, genetic variants and drug targets. Biochim. Biophys. Acta 1768, 994–1005 (2007). doi: 10.1016/j.bbamem.2006.09.029 (10.1016/j.bbamem.2006.09.029) / Biochim. Biophys. Acta by P.A. Insel (2007)
  24. Lin, S.H., Civelli, O.: Orphan G protein-coupled receptors: targets for new therapeutic interventions. Ann. Med. 36, 204–214 (2004). doi: 10.1080/07853890310024668 (10.1080/07853890310024668) / Ann. Med. by S.H. Lin (2004)
  25. Straume, M., Litman, B.J.: Equilibrium and dynamic bilayer structural properties of unsaturated acyl chain phosphatidylcholine–cholesterol–rhodopsin recombinant vesicles and rod outer segment disk membranes as determined from higher order analysis of fluorescence anisotropy decay. Biochemistry 27, 7723–7733 (1988). doi: 10.1021/bi00420a022 (10.1021/bi00420a022) / Biochemistry by M. Straume (1988)
  26. Mitchell, D.C., Straume, M., Miller, J.L., Litman, B.J.: Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry 29, 9143–9149 (1990). doi: 10.1021/bi00491a007 (10.1021/bi00491a007) / Biochemistry by D.C. Mitchell (1990)
  27. Albert, A.D., Boesze-Battaglia, K.: The role of cholesterol in rod outer segment membranes. Prog. Lipid Res. 44, 99–124 (2005). doi: 10.1016/j.plipres.2005.02.001 (10.1016/j.plipres.2005.02.001) / Prog. Lipid Res. by A.D. Albert (2005)
  28. Gimpl, G., Burger, K., Fahrenholz, F.: Cholesterol as modulator of receptor function. Biochemistry 36, 10959–10974 (1997). doi: 10.1021/bi963138w (10.1021/bi963138w) / Biochemistry by G. Gimpl (1997)
  29. Harikumar, K.G., Puri, V., Singh, R.D., Hanada, K., Pagano, R.E., Miller, L.J.: Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J. Biol. Chem. 280, 2176–2185 (2005). doi: 10.1074/jbc.M410385200 (10.1074/jbc.M410385200) / J. Biol. Chem. by K.G. Harikumar (2005)
  30. Pang, L., Graziano, M., Wang, S.: Membrane cholesterol modulates galanin–GalR2 interaction. Biochemistry 38, 12003–12011 (1999). doi: 10.1021/bi990227a (10.1021/bi990227a) / Biochemistry by L. Pang (1999)
  31. Pucadyil, T.J., Chattopadhyay, A.: Cholesterol modulates the ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim. Biophys. Acta 1663, 188–200 (2004). doi: 10.1016/j.bbamem.2004.03.010 (10.1016/j.bbamem.2004.03.010) / Biochim. Biophys. Acta by T.J. Pucadyil (2004)
  32. Pucadyil, T.J., Chattopadhyay, A.: Cholesterol modulates the antagonist-binding function of bovine hippocampal serotonin1A receptors. Biochim. Biophys. Acta 1714, 35–42 (2005). doi: 10.1016/j.bbamem.2005.06.005 (10.1016/j.bbamem.2005.06.005) / Biochim. Biophys. Acta by T.J. Pucadyil (2005)
  33. Paila, Y.D., Pucadyil, T.J., Chattopadhyay, A.: The cholesterol-complexing agent digitonin modulates ligand binding of the bovine hippocampal serotonin1A receptor. Mol. Membr. Biol. 22, 241–249 (2005). doi: 10.1080/09687860500093453 (10.1080/09687860500093453) / Mol. Membr. Biol. by Y.D. Paila (2005)
  34. Sjögren, B., Hamblin, M.W., Svenningsson, P.: Cholesterol depletion reduces serotonin binding and signaling via human 5-HT7(a) receptors. Eur. J. Pharmacol. 552, 1–10 (2006). doi: 10.1016/j.ejphar.2006.08.069 (10.1016/j.ejphar.2006.08.069) / Eur. J. Pharmacol. by B. Sjögren (2006)
  35. Eroglu, C., Cronet, P., Panneels, V., Beaufils, P., Sinning, I.: Functional reconstitution of purified metabotropic glutamate receptor expressed in the fly eye. EMBO Rep. 3, 491–496 (2002). doi: 10.1093/embo-reports/kvf088 (10.1093/embo-reports/kvf088) / EMBO Rep. by C. Eroglu (2002)
  36. Eroglu, C., Brugger, B., Wieland, F., Sinning, I.: Glutamate-binding affinity of Drosophila metabotropic glutamate receptor is modulated by association with lipid rafts. Proc. Natl. Acad. Sci. USA 100, 10219–10224 (2003). doi: 10.1073/pnas.1737042100 (10.1073/pnas.1737042100) / Proc. Natl. Acad. Sci. USA by C. Eroglu (2003)
  37. Huang, P., Xu, W., Yoon, S.-I., Chen, C., Chong, P.L.-G., Liu-Chen, L.-Y.: Cholesterol reduction by methyl-β-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem. Pharmacol. 73, 534–549 (2007). doi: 10.1016/j.bcp.2006.10.032 (10.1016/j.bcp.2006.10.032) / Biochem. Pharmacol. by P. Huang (2007)
  38. Xu, W., Yoon, S.-I., Huang, P., Wang, Y., Chen, C., Chong, P.L.-G., Liu-Chen, L.-Y.: Localization of the κ opioid receptor in lipid rafts. J. Pharmacol. Exp. Ther. 317, 1295–1306 (2006). doi: 10.1124/jpet.105.099507 (10.1124/jpet.105.099507) / J. Pharmacol. Exp. Ther. by W. Xu (2006)
  39. Lagane, B., Gaibelet, G., Meilhoc, E., Masson, J.-M., Cézanne, L., Lopez, A.: Role of sterols in modulating the human μ-opioid receptor function in Saccharomyces cerevisiae. J. Biol. Chem. 275, 33197–33200 (2000). doi: 10.1074/jbc.C000576200 (10.1074/jbc.C000576200) / J. Biol. Chem. by B. Lagane (2000)
  40. Gimpl, G., Klein, U., Reiländer, H., Fahrenholz, F.: Expression of the human oxytocin receptor in baculovirus-infected insect cells: high-affinity binding is induced by a cholesterol–cyclodextrin complex. Biochemistry 34, 13794–13801 (1995). doi: 10.1021/bi00042a010 (10.1021/bi00042a010) / Biochemistry by G. Gimpl (1995)
  41. Fahrenholz, F., Klein, U., Gimpl, G.: Conversion of the myometrial oxytocin receptor from low to high affinity state by cholesterol. Adv. Exp. Med. Biol. 395, 311–319 (1995) / Adv. Exp. Med. Biol. by F. Fahrenholz (1995)
  42. Klein, U., Gimpl, G., Fahrenholz, F.: Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34, 13784–13793 (1995). doi: 10.1021/bi00042a009 (10.1021/bi00042a009) / Biochemistry by U. Klein (1995)
  43. Gimpl, G., Wiegand, V., Burger, K., Fahrenholz, F.: Cholesterol and steroid hormones: modulators of oxytocin receptor function. Prog. Brain Res. 139, 43–55 (2002). doi: 10.1016/S0079-6123(02)39006-X (10.1016/S0079-6123(02)39006-X) / Prog. Brain Res. by G. Gimpl (2002)
  44. Kirilovsky, J., Schramm, M.: Delipidation of a β-adrenergic receptor preparation and reconstitution by specific lipids. J. Biol. Chem. 258, 6841–6849 (1983) (10.1016/S0021-9258(18)32299-3) / J. Biol. Chem. by J. Kirilovsky (1983)
  45. Kirilovsky, J., Eimerl, S., Steiner-Mordoch, S., Schramm, M.: Function of the delipidated β-adrenergic receptor appears to require a fatty acid or a neutral lipid in addition to phospholipids. Eur. J. Biochem. 166, 221–228 (1987). doi: 10.1111/j.1432-1033.1987.tb13505.x (10.1111/j.1432-1033.1987.tb13505.x) / Eur. J. Biochem. by J. Kirilovsky (1987)
  46. Ben-Arie, N., Gileadi, C., Schramm, M.: Interaction of the β-adrenergic receptor with Gs following delipidation. Specific lipid requirements for Gs activation and GTPase function. Eur. J. Biochem. 176, 649–654 (1988). doi: 10.1111/j.1432-1033.1988.tb14326.x (10.1111/j.1432-1033.1988.tb14326.x) / Eur. J. Biochem. by N. Ben-Arie (1988)
  47. Nguyen, D.H., Taub, D.: CXCR4 function requires membrane cholesterol: implications for HIV infection. J. Immunol. 168, 4121–4126 (2002) (10.4049/jimmunol.168.8.4121) / J. Immunol. by D.H. Nguyen (2002)
  48. Nguyen, D.H., Taub, D.: Cholesterol is essential for macrophage inflammatory protein 1 beta binding and conformational integrity of CC chemokine receptor 5. Blood 99, 4298–4306 (2002). doi: 10.1182/blood-2001-11-0087 (10.1182/blood-2001-11-0087) / Blood by D.H. Nguyen (2002)
  49. Nguyen, D.H., Taub, D.D.: Inhibition of chemokine receptor function by membrane cholesterol oxidation. Exp. Cell Res. 291, 36–45 (2003). doi: 10.1016/S0014-4827(03)00345-8 (10.1016/S0014-4827(03)00345-8) / Exp. Cell Res. by D.H. Nguyen (2003)
  50. Monastyrskaya, K., Hostettler, A., Buergi, S., Draeger, A.: The NK1 receptor localizes to the plasma membrane microdomains, and its activation is dependent on lipid raft integrity. J. Biol. Chem. 280, 7135–7146 (2005). doi: 10.1074/jbc.M405806200 (10.1074/jbc.M405806200) / J. Biol. Chem. by K. Monastyrskaya (2005)
  51. Meyer, B.H., Segura, J.-M., Martinez, K.L., Hovius, R., George, N., Johnsson, K., Vogel, H.: FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci. USA 103, 2138–2143 (2006). doi: 10.1073/pnas.0507686103 (10.1073/pnas.0507686103) / Proc. Natl. Acad. Sci. USA by B.H. Meyer (2006)
  52. Bari, M., Battista, N., Fezza, F., Finazzi-Agrò, A., Maccarrone, M.: Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis. J. Biol. Chem. 280, 12212–12220 (2005). doi: 10.1074/jbc.M411642200 (10.1074/jbc.M411642200) / J. Biol. Chem. by M. Bari (2005)
  53. Bari, M., Paradisi, A., Pasquariello, N., Maccarrone, M.: Cholesterol-dependent modulation of type 1 cannabinoid receptors in nerve cells. J. Neurosci. Res. 81, 275–283 (2005). doi: 10.1002/jnr.20546 (10.1002/jnr.20546) / J. Neurosci. Res. by M. Bari (2005)
  54. Colozo, A.T., Park, P.S.-H., Sum, C.S., Pisterzi, L.F., Wells, J.W.: Cholesterol as a determinant of cooperativity in the M2 muscarinic cholinergic receptor. Biochem. Pharmacol. 74, 236–255 (2007). doi: 10.1016/j.bcp.2007.04.009 (10.1016/j.bcp.2007.04.009) / Biochem. Pharmacol. by A.T. Colozo (2007)
  55. Gimpl, G., Burger, K., Fahrenholz, F.: A closer look at the cholesterol sensor. Trends Biochem. Sci. 27, 596–599 (2002). doi: 10.1016/S0968-0004(02)02224-7 (10.1016/S0968-0004(02)02224-7) / Trends Biochem. Sci. by G. Gimpl (2002)
  56. Ohvo-Rekilä, H., Ramstedt, B., Leppimäki, P., Slotte, J.P.: Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 41, 66–97 (2002). doi: 10.1016/S0163-7827(01)00020-0 (10.1016/S0163-7827(01)00020-0) / Prog. Lipid Res. by H. Ohvo-Rekilä (2002)
  57. Jones, O.T., McNamee, M.G.: Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry 27, 2364–2374 (1988). doi: 10.1021/bi00407a018 (10.1021/bi00407a018) / Biochemistry by O.T. Jones (1988)
  58. Simmonds, A.C., East, J.M., Jones, O.T., Rooney, E.K., McWhirter, J., Lee, A.G.: Annular and non-annular binding sites on the (Ca2+ + Mg2+)–ATPase. Biochim. Biophys. Acta 693, 398–406 (1982). doi: 10.1016/0005-2736(82)90447-3 (10.1016/0005-2736(82)90447-3) / Biochim. Biophys. Acta by A.C. Simmonds (1982)
  59. Lee, A.G., East, J.M., Jones, O.T., McWhirter, J., Rooney, E.K., Simmonds, A.C.: Interaction of fatty acids with the calcium–magnesium ion dependent adenosinetriphosphatase from sarcoplasmic reticulum. Biochemistry 21, 6441–6446 (1982). doi: 10.1021/bi00268a019 (10.1021/bi00268a019) / Biochemistry by A.G. Lee (1982)
  60. Park, P.S., Filipek, S., Wells, J.W., Palczewski, K.: Oligomerization of G protein-coupled receptors: past, present, and future. Biochemistry 43, 15643–15656 (2004). doi: 10.1021/bi047907k (10.1021/bi047907k) / Biochemistry by P.S. Park (2004)
  61. Yao, Z., Kobilka, B.: Using synthetic lipids to stabilize purified β2 adrenoceptor in detergent micelles. Anal. Biochem. 343, 344–346 (2005). doi: 10.1016/j.ab.2005.05.002 (10.1016/j.ab.2005.05.002) / Anal. Biochem. by Z. Yao (2005)
  62. Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G.F., Thian, F.S., Kobilka, T.S., Choi, H.-J., Kuhn, P., Weis, W.I., Kobilka, B.K., Stevens, R.C.: High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007). doi: 10.1126/science.1150577 (10.1126/science.1150577) / Science by V. Cherezov (2007)
  63. Albert, A.D., Young, J.E., Yeagle, P.L.: Rhodopsin–cholesterol interactions in bovine rod outer segment disk membranes. Biochim. Biophys. Acta 1285, 47–55 (1996). doi: 10.1016/S0005-2736(96)00145-9 (10.1016/S0005-2736(96)00145-9) / Biochim. Biophys. Acta by A.D. Albert (1996)
  64. Bennett, M.P., Mitchell, D.C.: Regulation of membrane proteins by dietary lipids: effects of cholesterol and docosahexaenoic acid acyl chain-containing phospholipids on rhodopsin stability and function. Biophys. J. 95, 1206–1216 (2008). doi: 10.1529/biophysj.107.122788 (10.1529/biophysj.107.122788) / Biophys. J. by M.P. Bennett (2008)
  65. Attwood, P.V., Gutfreund, H.: The application of pressure relaxation to the study of the equilibrium between metarhodopsin I and II from bovine retinas. FEBS Lett. 119, 323–326 (1980). doi: 10.1016/0014-5793(80)80281-X (10.1016/0014-5793(80)80281-X) / FEBS Lett. by P.V. Attwood (1980)
  66. Niu, S.L., Mitchell, D.C., Litman, B.J.: Manipulation of cholesterol levels in rod disk membranes by methyl-β-cyclodextrin: effects on receptor activation. J. Biol. Chem. 277, 20139–20145 (2002). doi: 10.1074/jbc.M200594200 (10.1074/jbc.M200594200) / J. Biol. Chem. by S.L. Niu (2002)
  67. Polozova, A., Litman, B.J.: Cholesterol dependent recruitment of di22:6-PC by a G protein-coupled receptor into lateral domains. Biophys. J. 79, 2632–2643 (2000) (10.1016/S0006-3495(00)76502-7) / Biophys. J. by A. Polozova (2000)
  68. Pitman, M.C., Grossfield, A., Suits, F., Feller, S.E.: Role of cholesterol and polyunsaturated chains in lipid–protein interactions: molecular dynamics simulation of rhodopsin in a realistic membrane environment. J. Am. Chem. Soc. 127, 4576–4577 (2005). doi: 10.1021/ja042715y (10.1021/ja042715y) / J. Am. Chem. Soc. by M.C. Pitman (2005)
  69. Politowska, E., Kazmierkiewicz, R., Wiegand, V., Fahrenholz, F., Ciarkowski, J.: Molecular modelling study of the role of cholesterol in the stimulation of the oxytocin receptor. Acta Biochim. Pol. 48, 83–93 (2001) (10.18388/abp.2001_5114) / Acta Biochim. Pol. by E. Politowska (2001)
  70. Gimpl, G., Fahrenholz, F.: Cholesterol as stabilizer of the oxytocin receptor. Biochim. Biophys. Acta 1564, 384–392 (2002). doi: 10.1016/S0005-2736(02)00475-3 (10.1016/S0005-2736(02)00475-3) / Biochim. Biophys. Acta by G. Gimpl (2002)
  71. Pucadyil, T.J., Kalipatnapu, S., Chattopadhyay, A.: The serotonin1A receptor: a representative member of the serotonin receptor family. Cell. Mol. Neurobiol. 25, 553–580 (2005). doi: 10.1007/s10571-005-3969-3 (10.1007/s10571-005-3969-3) / Cell. Mol. Neurobiol. by T.J. Pucadyil (2005)
  72. Hoyer, D., Hannon, J.P., Martin, G.R.: Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71, 533–554 (2002). doi: 10.1016/S0091-3057(01)00746-8 (10.1016/S0091-3057(01)00746-8) / Pharmacol. Biochem. Behav. by D. Hoyer (2002)
  73. Kobilka, B.K., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T.S., Francke, U., Lefkowitz, R.J., Caron, M.G.: An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329, 75–79 (1987). doi: 10.1038/329075a0 (10.1038/329075a0) / Nature by B.K. Kobilka (1987)
  74. Fargin, A., Raymond, J.R., Lohse, M.J., Kobilka, B.K., Caron, M.G., Lefkowitz, R.J.: The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335, 358–360 (1988). doi: 10.1038/335358a0 (10.1038/335358a0) / Nature by A. Fargin (1988)
  75. Gingrich, J.A., Hen, R.: Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology (Berl.) 155, 1–10 (2001). doi: 10.1007/s002130000573 (10.1007/s002130000573) / Psychopharmacology (Berl.) by J.A. Gingrich (2001)
  76. Toth, M.: 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur. J. Pharmacol. 463, 177–184 (2003). doi: 10.1016/S0014-2999(03)01280-9 (10.1016/S0014-2999(03)01280-9) / Eur. J. Pharmacol. by M. Toth (2003)
  77. Pucadyil, T.J., Shrivastava, S., Chattopadhyay, A.: The sterol-binding antibiotic nystatin differentially modulates ligand binding of the bovine hippocampal serotonin1A receptor. Biochem. Biophys. Res. Commun. 320, 557–562 (2004). doi: 10.1016/j.bbrc.2004.06.004 (10.1016/j.bbrc.2004.06.004) / Biochem. Biophys. Res. Commun. by T.J. Pucadyil (2004)
  78. Pucadyil, T.J., Shrivastava, S., Chattopadhyay, A.: Membrane cholesterol oxidation inhibits ligand binding function of hippocampal serotonin1A receptors. Biochem. Biophys. Res. Commun. 331, 422–427 (2005). doi: 10.1016/j.bbrc.2005.03.178 (10.1016/j.bbrc.2005.03.178) / Biochem. Biophys. Res. Commun. by T.J. Pucadyil (2005)
  79. Paila, Y.D., Murty, M.R.V.S., Vairamani, M., Chattopadhyay, A.: Signaling by the human serotonin1A receptor is impaired in cellular model of Smith–Lemli–Opitz Syndrome. Biochim. Biophys. Acta 1778, 1508–1516 (2008). doi: 10.1016/j.bbamem.2008.03.002 (10.1016/j.bbamem.2008.03.002) / Biochim. Biophys. Acta by Y.D. Paila (2008)
  80. Porter, F.D.: Smith–Lemli–Opitz syndrome: pathogenesis, diagnosis and management. Eur. J. Hum. Genet. 16, 535–541 (2008). doi: 10.1038/ejhg.2008.10 (10.1038/ejhg.2008.10) / Eur. J. Hum. Genet. by F.D. Porter (2008)
  81. Singh, P., Paila, Y.D., Chattopadhyay, A.: Differential effects of cholesterol and 7-dehydrocholesterol on the ligand binding activity of the hippocampal serotonin1A receptors: implications in SLOS. Biochem. Biophys. Res. Commun. 358, 495–499 (2007). doi: 10.1016/j.bbrc.2007.04.135 (10.1016/j.bbrc.2007.04.135) / Biochem. Biophys. Res. Commun. by P. Singh (2007)
  82. Chattopadhyay, A., Paila, Y.D., Jafurulla, Md., Chaudhuri, A., Singh, P., Murty, M.R.V.S., Vairamani, M.: Differential effects of cholesterol and 7-dehydrocholesterol on ligand binding of solubilized hippocampal serotonin1A receptors: implications in SLOS. Biochem. Biophys. Res. Commun. 363, 800–805 (2007). doi: 10.1016/j.bbrc.2007.09.040 (10.1016/j.bbrc.2007.09.040) / Biochem. Biophys. Res. Commun. by A. Chattopadhyay (2007)
  83. Shrivastava, S., Paila, Y.D., Dutta, A., Chattopadhyay, A.: Differential effects of cholesterol and its immediate biosynthetic precursors on membrane organization. Biochemistry 47, 5668–5677 (2008). doi: 10.1021/bi8001677 (10.1021/bi8001677) / Biochemistry by S. Shrivastava (2008)
  84. Brown, R.E.: Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J. Cell Sci. 111, 1–9 (1998) (10.1242/jcs.111.1.1) / J. Cell Sci. by R.E. Brown (1998)
  85. Hoetzl, S., Sprong, H., van Meer, G.: The way we view cellular (glyco)sphingolipids. J. Neurochem. 103, 3–13 (2007). doi: 10.1111/j.1471-4159.2007.04721.x (10.1111/j.1471-4159.2007.04721.x) / J. Neurochem. by S. Hoetzl (2007)
  86. Yamashita, T., Wada, R., Sasaki, T., Deng, C., Bierfreund, U., Sandhoff, K., Proia, R.L.: A vital role for glycosphingolipid synthesis during development and differentiation. Proc. Natl. Acad. Sci. USA 96, 9142–9147 (1999). doi: 10.1073/pnas.96.16.9142 (10.1073/pnas.96.16.9142) / Proc. Natl. Acad. Sci. USA by T. Yamashita (1999)
  87. Kalipatnapu, S., Chattopadhyay, A.: Membrane protein solubilization: recent advances and challenges in solubilization of serotonin1A receptors. IUBMB Life 57, 505–512 (2005). doi: 10.1080/15216540500167237 (10.1080/15216540500167237) / IUBMB Life by S. Kalipatnapu (2005)
  88. Paila, Y.D., Chattopadhyay, A.: The human serotonin1A receptor expressed in neuronal cells: toward a native environment for neuronal receptors. Cell. Mol. Neurobiol. 26, 925–942 (2006). doi: 10.1007/s10571-006-9098-9 (10.1007/s10571-006-9098-9) / Cell. Mol. Neurobiol. by Y.D. Paila (2006)
Dates
Type When
Created 16 years, 8 months ago (Dec. 3, 2008, 3:23 p.m.)
Deposited 3 years, 11 months ago (Sept. 24, 2021, 5:09 p.m.)
Indexed 5 months, 2 weeks ago (March 19, 2025, 11:15 a.m.)
Issued 16 years, 8 months ago (Dec. 4, 2008)
Published 16 years, 8 months ago (Dec. 4, 2008)
Published Online 16 years, 8 months ago (Dec. 4, 2008)
Published Print 16 years, 1 month ago (Aug. 1, 2009)
Funders 0

None

@article{Paila_2008, title={The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction?}, volume={26}, ISSN={1573-4986}, url={http://dx.doi.org/10.1007/s10719-008-9218-5}, DOI={10.1007/s10719-008-9218-5}, number={6}, journal={Glycoconjugate Journal}, publisher={Springer Science and Business Media LLC}, author={Paila, Yamuna Devi and Chattopadhyay, Amitabha}, year={2008}, month=dec, pages={711–720} }