Crossref journal-article
Springer Science and Business Media LLC
Biomedical Microdevices (297)
Bibliography

Zhang, S. X., Gao, J., Buchholz, T. A., Wang, Z., Salehpour, M. R., Drezek, R. A., & Yu, T.-K. (2009). Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study. Biomedical Microdevices, 11(4), 925–933.

Authors 7
  1. Sean X. Zhang (first)
  2. Junfang Gao (additional)
  3. Thomas A. Buchholz (additional)
  4. Zhonglu Wang (additional)
  5. Mohammad R. Salehpour (additional)
  6. Rebekah A. Drezek (additional)
  7. Tse-Kuan Yu (additional)
References 31 Referenced 82
  1. S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003). doi: 10.1016/S0168-9002(03)01368-8 (10.1016/S0168-9002(03)01368-8) / Nucl. Instrum. Methods Phys. Res. A by S Agostinelli (2003)
  2. J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006). doi: 10.1109/TNS.2006.869826 (10.1109/TNS.2006.869826) / IEEE Trans. Nucl. Sci. by J Allison (2006)
  3. A. Angelopoulos, P. Baras, L. Sakelliou et al., Monte Carlo dosimetry of a new Ir-192 high dose rate brachytherapy source. Med. Phys. 27, 2521–2527 (2000). doi: 10.1118/1.1315316 (10.1118/1.1315316) / Med. Phys. by A Angelopoulos (2000)
  4. F. Ballester, C. Hernández, J. Pèrez-Calatayud et al., Monte Carlo calculation of dose rate distributions around Ir-192 wires. Med. Phys 24, 1221–1228 (1997). doi: 10.1118/1.598142 (10.1118/1.598142) / Med. Phys by F Ballester (1997)
  5. F. Ballester, J. Pèrez-Calatayud, V. Puchades et al., Monte Carlo dosimetry of Buchler high dose rate Ir-192 source. Med. Phys 28, 2586–2591 (2001). doi: 10.1118/1.1420398 (10.1118/1.1420398) / Med. Phys by F Ballester (2001)
  6. K. Bullis, Remotely activated nanoparticles destroy cancer. Technology Review 2007. http://www.technologyreview.com/Nanotech/17956/ . Published January 2, 2007. Accessed November 25, 2007
  7. S.H. Cho, Estimation of tumor dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys. Med. Biol 50, N-163–N-173 (2005) (10.1088/0031-9155/50/15/N01) / Phys. Med. Biol by SH Cho (2005)
  8. S.J. Douglas, S.S. Davis, L. Illum, Nanoparticles in drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 3, 133–161 (1987) / Crit. Rev. Ther. Drug Carrier Syst. by SJ Douglas (1987)
  9. A.M. Gobin, M.H. Lee, N.J. Halas et al., Nano Lett 7, 1929–1934 (2007). doi: 10.1021/nl070610y (10.1021/nl070610y) / Nano Lett by AM Gobin (2007)
  10. D. Granero, J. Pèrez-Calatayud, F. Ballester, Monte Carlo calculation of the TG-43 dosimetric parameters of a new BEBIG Ir-192 HDR source. Radiother. Oncol 76, 79–85 (2005). doi: 10.1016/j.radonc.2005.06.016 (10.1016/j.radonc.2005.06.016) / Radiother. Oncol by D Granero (2005)
  11. J.F. Hainfeld, D.N. Slatkin, H.M. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, 309-N–315 (2004) (10.1088/0031-9155/49/18/N03) / Phys. Med. Biol. by JF Hainfeld (2004)
  12. J.F. Hainfeld, D.N. Slatkin, T.M. Focella et al., Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol. 79, 248–253 (2006). doi: 10.1259/bjr/13169882 (10.1259/bjr/13169882) / Br. J. Radiol. by JF Hainfeld (2006)
  13. D.M. Herold, I.J. Das, C.C. Stobbe et al., Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int. J. Radiat. Biol 76, 1357–1364 (2000). doi: 10.1080/09553000050151637 (10.1080/09553000050151637) / Int. J. Radiat. Biol by DM Herold (2000)
  14. M. Hu, J.Y. Chen, Z.Y. Li et al., Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev 35, 1084–1094 (2006). doi: 10.1039/b517615h (10.1039/b517615h) / Chem. Soc. Rev by M Hu (2006)
  15. H.E. Johns, J.W. Hunt, S.O. Fedoruk, Surface back-scatter in the 100 kV to 400 kV range. Br. J. Radiol. 27, 443–448 (1954) (10.1259/0007-1285-27-320-443) / Br. J. Radiol. by HE Johns (1954)
  16. K.L. Kelly, E. Coronado, L.L. Zhao et al., The optical properties of metal nanoparticles: The influences of size, shape, and dielectric environment. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 107, 668–677 (2003) / J Phys Chem B Condens Matter Mater Surf Interfaces Biophys by KL Kelly (2003)
  17. C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5(4)), 709–711 (2005). doi: 10.1021/nl050127s (10.1021/nl050127s) / Nano Lett. by C Loo (2005)
  18. R. Nath, L.L. Anderson, G. Luxton et al., Dosimetry of interstitial brachytherapy source: recommendations of AAPM radiation therapy committee task group No. 43. Med. Phys 22, 209–234 (1995). doi: 10.1118/1.597458 (10.1118/1.597458) / Med. Phys by R Nath (1995)
  19. C. Noguez, Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C. Nanomaterials Interfaces 111, 3806–3819 (2007) (10.1021/jp066539m) / J. Phys. Chem. C. Nanomaterials Interfaces by C Noguez (2007)
  20. NuDat 2.4. National Nuclear Data Center. Nuclear data from NuDat, a web-based database maintained by the National Nuclear Data Center. Upton, NY, USA: Brookhaven National Laboratory; http://www.nndc.bnl.gov/nudat2 . Accessed November 25, 2007
  21. J. Panyam, V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev 55, 329–347 (2003). doi: 10.1016/S0169-409X(02)00228-4 (10.1016/S0169-409X(02)00228-4) / Adv. Drug Deliv. Rev by J Panyam (2003)
  22. Physics Laboratory, National Institute of Standards and Technology., Stopping-power and range tables for electrons. http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html . Accessed November 25, 2007
  23. M.J. Rivard, B.M. Coursey, L.A. Dewerd et al., Update of AAPM task group No. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med. Phys. 31, 633–674 (2004). doi: 10.1118/1.1646040 (10.1118/1.1646040) / Med. Phys. by MJ Rivard (2004)
  24. J.L. Robar, Generation and modeling of megavoltage photon beams for contrast-enhanced radiation therapy. Phys. Med. Biol 51, 5487–5504 (2006). doi: 10.1088/0031-9155/51/21/007 (10.1088/0031-9155/51/21/007) / Phys. Med. Biol by JL Robar (2006)
  25. J.L. Robar, S.A. Riccio, M.A. Martin, Tumor dose enhancement using modified megavoltage photon beams and contrast media. Phys. Med. Biol 47, 2433–2449 (2002). doi: 10.1088/0031-9155/47/14/305 (10.1088/0031-9155/47/14/305) / Phys. Med. Biol by JL Robar (2002)
  26. J.H. Sakamoto, B.R. Smith, B. Xie et al., The molecular analysis of breast cancer utilized targeted nanoparticle based ultrasound contrast agents. Technol. Cancer Res. Treat. 4, 627–636 (2005) (10.1177/153303460500400606) / Technol. Cancer Res. Treat. by JH Sakamoto (2005)
  27. G. Schmid, Nanoparticles: from theory to application (Wiley-Vch Verlag GmbH & Co. KGaA; Weinheim, Germany, 2004) / Nanoparticles: from theory to application by G Schmid (2004)
  28. D.C. Sullivan, M. Ferrari, Nanotechnology and tumor imaging: seizing an opportunity. Mol. Imaging 3, 364–369 (2004). doi: 10.1162/1535350042973526 (10.1162/1535350042973526) / Mol. Imaging by DC Sullivan (2004)
  29. F. Verhaegen, B. Reniers, E. Deblois et al., Dosimetric and microdosimetric study of contrast-enhanced radiotherapy with kilovolt X-rays. Phys. Med. Biol 50, 3555–3569 (2005). doi: 10.1088/0031-9155/50/15/005 (10.1088/0031-9155/50/15/005) / Phys. Med. Biol by F Verhaegen (2005)
  30. J.F. Williamson, Monte Carlo evaluation of kerma at a point for photon transport problems. Med. Phys. 14, 567–576 (1987). doi: 10.1118/1.596069 (10.1118/1.596069) / Med. Phys. by JF Williamson (1987)
  31. X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5. LA-UR-03-1987. Los Alamos National Laboratory: Los Alamos, NM, 2004
Dates
Type When
Created 16 years, 4 months ago (April 20, 2009, 2:34 a.m.)
Deposited 6 years, 2 months ago (May 30, 2019, 8:15 a.m.)
Indexed 1 year, 1 month ago (July 28, 2024, 7:31 p.m.)
Issued 16 years, 4 months ago (April 21, 2009)
Published 16 years, 4 months ago (April 21, 2009)
Published Online 16 years, 4 months ago (April 21, 2009)
Published Print 16 years ago (Aug. 1, 2009)
Funders 0

None

@article{Zhang_2009, title={Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study}, volume={11}, ISSN={1572-8781}, url={http://dx.doi.org/10.1007/s10544-009-9309-5}, DOI={10.1007/s10544-009-9309-5}, number={4}, journal={Biomedical Microdevices}, publisher={Springer Science and Business Media LLC}, author={Zhang, Sean X. and Gao, Junfang and Buchholz, Thomas A. and Wang, Zhonglu and Salehpour, Mohammad R. and Drezek, Rebekah A. and Yu, Tse-Kuan}, year={2009}, month=apr, pages={925–933} }