Crossref journal-article
Springer Science and Business Media LLC
BIT Numerical Mathematics (297)
Bibliography

Pachón, R., & Trefethen, L. N. (2009). Barycentric-Remez algorithms for best polynomial approximation in the chebfun system. BIT Numerical Mathematics, 49(4), 721–741.

Authors 2
  1. Ricardo Pachón (first)
  2. Lloyd N. Trefethen (additional)
References 53 Referenced 42
  1. Almacany, M., Dunham, C., Williams, J.: Discrete Chebyshev approximation by interpolating rationals. IMA J. Numer. Anal. 4, 467–477 (1984) (10.1093/imanum/4.4.467) / IMA J. Numer. Anal. by M. Almacany (1984)
  2. Barrodale, I., Phillips, C.: Solution of an overdetermined system of linear equations in the Chebyshev norm. ACM Trans. Math. Softw. 1, 264–270 (1975) (10.1145/355644.355651) / ACM Trans. Math. Softw. by I. Barrodale (1975)
  3. Battles, Z.: Numerical linear algebra for continuous functions. PhD thesis, University of Oxford (2005)
  4. Battles, Z., Trefethen, L.N.: An extension of MATLAB to continuous functions and operators. SIAM J. Sci. Comput. 25(5), 1743–1770 (2004) (10.1137/S1064827503430126) / SIAM J. Sci. Comput. by Z. Battles (2004)
  5. Bernstein, S.: Sur la meilleure approximation de |x| par des polynomes de degrés donnés. Acta Math. 37, 1–57 (1914) (10.1007/BF02401828) / Acta Math. by S. Bernstein (1914)
  6. Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004) (10.1137/S0036144502417715) / SIAM Rev. by J.P. Berrut (2004)
  7. Boothroyd, J.: Algorithm 318: Chebyschev curve-fit. Commun. ACM 10(12), 801–803 (1967) (10.1145/363848.363865) / Commun. ACM by J. Boothroyd (1967)
  8. Borel, E.: Leçons sur les fonctions de variables réelles. Gauthier-Villars, Paris (1905) / Leçons sur les fonctions de variables réelles by E. Borel (1905)
  9. Boyd, J.A.: Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding. SIAM J. Numer. Anal. 40(5), 1666–1682 (2002) (10.1137/S0036142901398325) / SIAM J. Numer. Anal. by J.A. Boyd (2002)
  10. Brutman, L.: Lebesgue functions for polynomial interpolation—a survey. Ann. Numer. Math. 4, 111–128 (1997) / Ann. Numer. Math. by L. Brutman (1997)
  11. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, New York (1966) / Introduction to Approximation Theory by E.W. Cheney (1966)
  12. Cody, W.J.: The FUNPACK package of special function subroutines. ACM Trans. Math. Softw. 1(1), 13–25 (1975) (10.1145/355626.355631) / ACM Trans. Math. Softw. by W.J. Cody (1975)
  13. Cody, W.J.: Algorithm 715: SPECFUN—a portable FORTRAN package of special function routines and test drivers. ACM Trans. Math. Softw. 19(1), 22–30 (1993) (10.1145/151271.151273) / ACM Trans. Math. Softw. by W.J. Cody (1993)
  14. Curtis, P.C., Frank, W.L.: An algorithm for the determination of the polynomial of best minimax approximation to a function defined on a finite point set. J. ACM 6, 395–404 (1959) (10.1145/320986.320994) / J. ACM by P.C. Curtis (1959)
  15. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975) / Interpolation and Approximation by P.J. Davis (1975)
  16. de Boor, C., Rice, J.R.: Extremal polynomials with application to Richardson iteration for indefinite linear systems. SIAM J. Sci. Stat. Comput. 3, 47–57 (1982) (10.1137/0903004) / SIAM J. Sci. Stat. Comput. by C. Boor de (1982)
  17. de la Vallée Poussin, C.J.: Sur les polynomes d’approximation et la représentation approchée d’un angle. Acad. R. Belg., Bull. Cl. Sci. 12 (1910)
  18. Dunham, C.B.: Choice of basis for Chebyshev approximation. ACM Trans. Math. Softw. 8(1), 21–25 (1982) (10.1145/355984.355987) / ACM Trans. Math. Softw. by C.B. Dunham (1982)
  19. Golub, G.H., Smith, L.B.: Algorithm 414: Chebyshev approximation of continuous functions by a Chebyshev system of functions. Commun. ACM 14(11), 737–746 (1971) (10.1145/362854.362890) / Commun. ACM by G.H. Golub (1971)
  20. Good, I.J.: The colleague matrix, a Chebyshev analogue of the companion matrix. Q. J. Math. 12, 61–68 (1961) (10.1093/qmath/12.1.61) / Q. J. Math. by I.J. Good (1961)
  21. Gutknecht, M.H., Trefethen, L.N.: Real polynomial Chebyshev approximation by the Carathéodory-Fejér method. SIAM J. Numer. Anal. 19, 358–371 (1982) (10.1137/0719022) / SIAM J. Numer. Anal. by M.H. Gutknecht (1982)
  22. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002) (10.1137/1.9780898718027) / Accuracy and Stability of Numerical Algorithms by N.J. Higham (2002)
  23. Higham, N.J.: The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 24, 547–556 (2004) (10.1093/imanum/24.4.547) / IMA J. Numer. Anal. by N.J. Higham (2004)
  24. Kaufman, Jr., E.H., Leeming, D.J., Taylor, G.D.: Uniform rational approximation by differential correction and Remes-differential correction. Int. J. Numer. Methods Eng. 17, 1273–1278 (1981) (10.1002/nme.1620170810) / Int. J. Numer. Methods Eng. by E.H. Kaufman Jr. (1981)
  25. Le Bailly, B., Thiran, J.P.: Computing complex polynomial Chebyshev approximants on the unit circle by the real Remez algorithm. SIAM J. Numer. Anal. 36, 1858–1877 (1999) (10.1137/S0036142998339519) / SIAM J. Numer. Anal. by B. Bailly Le (1999)
  26. Lorentz, G.G.: Approximation of Functions. Holt, Rinehart and Winston (1966)
  27. MATLAB: User’s Guide. The MathWorks Inc., Natick, Massachusetts
  28. McClellan, J.H., Parks, T.W.: A personal history of the Parks-McClellan algorithm. IEEE Signal Process. Mag. 22, 82–86 (2005) (10.1109/MSP.2005.1406492) / IEEE Signal Process. Mag. by J.H. McClellan (2005)
  29. McClellan, J.H., Parks, T.W., Rabiner, L.R.: A computer program for designing optimum FIR linear phase digital filters. IEEE Trans. Audio Electroacoust. 21, 506–526 (1973) (10.1109/TAU.1973.1162525) / IEEE Trans. Audio Electroacoust. by J.H. McClellan (1973)
  30. Meinardus, G.: Approximation of Functions: Theory and Numerical Methods. Springer, Heidelberg (1967) (10.1007/978-3-642-85643-3) / Approximation of Functions: Theory and Numerical Methods by G. Meinardus (1967)
  31. Mhaskar, H.N., Pai, D.V.: Fundamentals of Approximation Theory. Narosa Publishing House, New Delhi (2000) / Fundamentals of Approximation Theory by H.N. Mhaskar (2000)
  32. Murnaghan, F.D., Wrench, J.W.: J.: The determination of the Chebyshev approximating polynomial for a differentiable function. Math. Tables Aids Comput. 13, 185–193 (1959) (10.2307/2002711) / Math. Tables Aids Comput. by F.D. Murnaghan (1959)
  33. NAG: Library, Manual. The Numerical Algorithms Group, Ltd., Oxford, UK
  34. Numerical Libraries, I.M.S.L.: Technical Documentation. Visual Numerics Inc., Houston
  35. Pachón, R., Platte, R., Trefethen, L.N.: Piecewise smooth chebfuns. IMA J. Numer. Anal. (to appear) (10.1093/imanum/drp008)
  36. Parks, T.W., McClellan, J.H.: Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Trans. Circuit Theory 19, 189–194 (1972) (10.1109/TCT.1972.1083419) / IEEE Trans. Circuit Theory by T.W. Parks (1972)
  37. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981) (10.1017/CBO9781139171502) / Approximation Theory and Methods by M.J.D. Powell (1981)
  38. Rabinowitz, P.: Applications of linear programming to numerical analysis. SIAM Rev. 10, 121–159 (1968) (10.1137/1010029) / SIAM Rev. by P. Rabinowitz (1968)
  39. Remes, E.: Sur le calcul effectif des polynomes d’approximation de Tchebychef. C. R. Acad. Sci. 199, 337–340 (1934) / C. R. Acad. Sci. by E. Remes (1934)
  40. Remes, E.: Sur un procédé convergent d’approximations successives pour déterminer les polynomes d’approximation. C. R. Acad. Sci. 198, 2063–2065 (1934) / C. R. Acad. Sci. by E. Remes (1934)
  41. Remes, E.: Sur la détermination des polynomes d’approximation de degré donnée. Commun. Soc. Math. Kharkov 10 (1934)
  42. Rice, J.R.: The Approximation of Functions, vol. 1. Addison-Wesley, Reading (1964) / The Approximation of Functions, vol. 1 by J.R. Rice (1964)
  43. Sauer, F.W.: Algorithm 604: A FORTRAN program for the calculation of an extremal polynomial. ACM Trans. Math. Softw. 9(3), 381–383 (1983) (10.1145/356044.356055) / ACM Trans. Math. Softw. by F.W. Sauer (1983)
  44. Schmitt, H.: Algorithm 409, discrete Chebychev curve fit. Commun. ACM 14, 355–356 (1971) (10.1145/362588.362600) / Commun. ACM by H. Schmitt (1971)
  45. Simpson, J.C.: Fortran translation of algorithm 409, Discrete Chebychev curve fit. ACM Trans. Math. Softw. 2, 95–97 (1976) (10.1145/355666.355674) / ACM Trans. Math. Softw. by J.C. Simpson (1976)
  46. Specht, W.: Die Lage der Nullstellen eines Polynoms, IV. Math. Nachr. 21, 201–222 (1960) (10.1002/mana.19600210307) / Math. Nachr. by W. Specht (1960)
  47. Steffens, K.G.: The History of Approximation Theory: From Euler to Bernstein. Birkhäuser, Boston (2006) / The History of Approximation Theory: From Euler to Bernstein by K.G. Steffens (2006)
  48. Stiefel, E.L.: Numerical methods of Tchebycheff approximation. In: Langer, R. (ed.) On Numerical Approximation, pp. 217–232. University of Wisconsin Press, Madison (1959) / On Numerical Approximation by E.L. Stiefel (1959)
  49. Taylor, R., Totik, V.: Lebesgue constants for Leja points. IMA J. Numer. Anal. (to appear) (10.1093/imanum/drn082)
  50. Trefethen, L.N.: Square blocks and equioscillation in the Padé, Walsh, and CF tables. In: Graves-Morris, P., Saff, E., Varga, R. (eds.) Rational Approximation and Interpolation. Lect. Notes in Math., vol. 1105. Springer, Berlin (1984) / Rational Approximation and Interpolation / Lect. Notes in Math. by L.N. Trefethen (1984)
  51. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000) (10.1137/1.9780898719598) / Spectral Methods in MATLAB by L.N. Trefethen (2000)
  52. Varga, R.S., Carpenter, A.J.: On the Bernstein conjecture in approximation theory. Constr. Approx. 1, 333–348 (1985) (10.1007/BF01890040) / Constr. Approx. by R.S. Varga (1985)
  53. Veidinger, L.: On the numerical determination of the best approximation in the Chebyshev sense. Numer. Math. 2, 99–105 (1960) (10.1007/BF01386215) / Numer. Math. by L. Veidinger (1960)
Dates
Type When
Created 15 years, 10 months ago (Oct. 9, 2009, 6:44 a.m.)
Deposited 6 years, 2 months ago (May 31, 2019, 7:37 a.m.)
Indexed 2 months ago (June 20, 2025, 9:25 a.m.)
Issued 15 years, 10 months ago (Oct. 10, 2009)
Published 15 years, 10 months ago (Oct. 10, 2009)
Published Online 15 years, 10 months ago (Oct. 10, 2009)
Published Print 15 years, 8 months ago (Dec. 1, 2009)
Funders 0

None

@article{Pach_n_2009, title={Barycentric-Remez algorithms for best polynomial approximation in the chebfun system}, volume={49}, ISSN={1572-9125}, url={http://dx.doi.org/10.1007/s10543-009-0240-1}, DOI={10.1007/s10543-009-0240-1}, number={4}, journal={BIT Numerical Mathematics}, publisher={Springer Science and Business Media LLC}, author={Pachón, Ricardo and Trefethen, Lloyd N.}, year={2009}, month=oct, pages={721–741} }