Crossref
journal-article
Oxford University Press (OUP)
Journal of Industrial Microbiology & Biotechnology (286)
References
56
Referenced
94
-
Broquist HP (1991) Lysine-pipecolic acid metabolic relationships in microbes and mammals. Annu Rev Nutr 11:435–448
(
10.1146/annurev.nu.11.070191.002251
) / Annu Rev Nutr by HP Broquist (1991) -
Gupta RN, Spenser ID (1969) Biosynthesis of the piperidine nucleus. The mode of incorporation of lysine into pipecolic acid and into piperidine alkaloids. J Biol Chem 244:88–94
(
10.1016/S0021-9258(19)78195-2
) / J Biol Chem by RN Gupta (1969) -
Chang YF, Adams E (1974) d-Lysine catabolic pathway in Pseudomonas putida: interrelations with l-lysine catabolism. J Bacteriol 117:753–764
(
10.1128/JB.117.2.753-764.1974
) / J Bacteriol by YF Chang (1974) -
Chang YF, Adams E (1971) Induction of separate catabolic pathways for l- and d-lysine in Pseudomonas putida. Biochem Biophys Res Commun 45:570–577
(
10.1016/0006-291X(71)90455-4
) / Biochem Biophys Res Commun by YF Chang (1971) -
Fothergill JC, Guest JR (1977) Catabolism of l-lysine by Pseudomonas aeruginosa. J Gen Microbiol 99:139–155
(
10.1099/00221287-99-1-139
) / J Gen Microbiol by JC Fothergill (1977) -
Miller DL, Rodwell VW (1971) Metabolism of basic amino acids in Pseudomonas putida. Catabolism of lysine by cyclic and acyclic intermediates. J Biol Chem 246:2758–2764
(
10.1016/S0021-9258(18)62249-5
) / J Biol Chem by DL Miller (1971) -
Payton CW, Chang YF (1982) Δ1-piperideine-2-carboxylate reductase of Pseudomonas putida. J Bacteriol 149:864–871
(
10.1128/JB.149.3.864-871.1982
) / J Bacteriol by CW Payton (1982) -
Muramatsu H, Mihara H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N (2005) The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent Δ1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of d-lysine and d-proline. J Biol Chem 280:5329–5335
(
10.1074/jbc.M411918200
) / J Biol Chem by H Muramatsu (2005) -
Yonaha K, Misono H, Yamamoto T, Soda K (1975) d-Amino acid aminotransferase of Bacillus sphaericus: enzymologic and spectrometric properties. J Biol Chem 250:6983–6989
(
10.1016/S0021-9258(19)41029-6
) / J Biol Chem by Yonaha (1975) -
Kusakabe H, Kodama K, Kuninaka A, Yoshino H, Misono H, Soda K (1980) A new antitumor enzyme, l-lysine α-oxidase from Trichoderma viride. Purification and enzymological properties. J Biol Chem 255:976–981
(
10.1016/S0021-9258(19)86128-8
) / J Biol Chem by H Kusakabe (1980) -
Lukasheva EV, Berezov TT (2002) l-Lysine α-oxidase: physicochemical and biological properties. Biochemistry (Moscow) 67:1152–1158
(
10.1023/A:1020967408229
) / Biochemistry (Moscow) by EV Lukasheva (2002) -
Bruntner C, Bormann C (1998) The Streptomyces tendae Tu901 l-lysine 2-aminotransferase catalyzes the initial reaction in nikkomycin D biosynthesis. Eur J Biochem 254:347–355
(
10.1046/j.1432-1327.1998.2540347.x
) / Eur J Biochem by C Bruntner (1998) - Jordan B, Schmidt RM, Pape H (1984) Nikkomycin formation and lysine metabolism in Streptomyces tendae, In: The 3rd European congress on biotechnology. 1:451–455. Verlag Chemie, Weinheim
-
Cardenas ME, Zhu D, Heitman J (1995) Molecular mechanisms of immunosuppression by cyclosporine, FK506, and rapamycin. Curr Opin Nephrol Hypertens 4:472–477
(
10.1097/00041552-199511000-00002
) / Curr Opin Nephrol Hypertens by ME Cardenas (1995) - Sanglier JJGB, Dreyfuss M, Fehr T, Traber R, Schreier MH (1993) Immunosuppressants of microbial origin, Developments in industrial microbiology series, vol. 32. Wm, C. Brown Publisher, Dubuque, pp 1–27
-
Paiva NL, Demain AL, Roberts MF (1993) The immediate precursor of the nitrogen-containing ring of rapamycin is free pipecolic acid. Enzyme Microb Technol 15:581–585
(
10.1016/0141-0229(93)90020-3
) / Enzyme Microb Technol by NL Paiva (1993) -
Banaszynski LA, Liu, CW, Wandless TJ (2005) Characterization of the FKBP.rapamycin.FRB ternary complex. J Am Chem Soc 127:4715–4721
(
10.1021/ja043277y
) / J Am Chem Soc by LA Banaszynski (2005) -
Choi J, Chen J, Schreiber SL, Clardy J (1996) Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273:239–242
(
10.1126/science.273.5272.239
) / Science by J Choi (1996) -
Meadows RP, Nettesheim DG, Xu RX, Olejniczak ET, Petros AM, Holzman TF, Severin J, Gubbins E, Smith H, Fesik SW (1993) Three-dimensional structure of the FK506 binding protein/ascomycin complex in solution by heteronuclear three- and four-dimensional NMR. Biochemistry 32:754–765
(
10.1021/bi00054a004
) / Biochemistry by RP Meadows (1993) - Byrne KM, Shafiee A, Nielsen J, Arison B, Monaghan RL, Kaplan L (1993) The biosynthesis and enzymology of an immunosuppressant, immunomycin, produced by Streptomyces hygroscopicus var. ascomyceticus. Dev Ind Microbiol 32:29–45 / Dev Ind Microbiol by KM Byrne (1993)
-
Molnar I, Aparicio JF, Haydock SF, Khaw LE, Schwecke T, Konisg A, Staunton J, Leadlay PF (1996) Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. Gene 169:1–7
(
10.1016/0378-1119(95)00799-7
) / Gene by I Molnar (1996) -
Schwecke T, Aparicio JF, Molnar I, Konig A, Khaw LE, Haydock SF, Oliynyk M, Caffrey P, Cortes J, Lester JB et al (1995) The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci USA 92:7839–7843
(
10.1073/pnas.92.17.7839
) / Proc Natl Acad Sci USA by T Schwecke (1995) -
Sans N, Schindler U, Schroder J (1988) Ornithine cyclodeaminase from Ti plasmid C58: DNA sequence, enzyme properties and regulation of activity by arginine. Eur J Biochem 173:123–130
(
10.1111/j.1432-1033.1988.tb13975.x
) / Eur J Biochem by N Sans (1988) -
Schindler U, Sans N, Schroder J (1989) Ornithine cyclodeaminase from octopine Ti plasmid Ach5: identification, DNA sequence, enzyme properties, and comparison with gene and enzyme from nopaline Ti plasmid C58. J Bacteriol 171:847–854
(
10.1128/jb.171.2.847-854.1989
) / J Bacteriol by U Schindler (1989) -
Khaw LE, Bohm GA, Metcalfe S, Staunton J, Leadlay PF (1998) Mutational biosynthesis of novel rapamycins by a strain of Streptomyces hygroscopicus NRRL 5491 disrupted in rapL, encoding a putative lysine cyclodeaminase. J Bacteriol 180:809–814
(
10.1128/JB.180.4.809-814.1998
) / J Bacteriol by LE Khaw (1998) -
Motamedi H, Shafiee A (1998) The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur J Biochem 256:528–534
(
10.1046/j.1432-1327.1998.2560528.x
) / Eur J Biochem by H Motamedi (1998) -
Wu K, Chung L, Revill WP, Katz L, Reeves CD (2000) The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. Gene 251:81–90
(
10.1016/S0378-1119(00)00171-2
) / Gene by K Wu (2000) -
Muth WL, Costilow RN (1974) Ornithine cyclase (deaminating). III. Mechanism of the conversion of ornithine to proline. J Biol Chem 249:7463–7467
(
10.1016/S0021-9258(19)81261-9
) / J Biol Chem by WL Muth (1974) -
Namwat W, Kamioka Y, Kinoshita H, Yamada Y, Nihira T (2002) Characterization of virginiamycin S biosynthetic genes from Streptomyces virginiae. Gene 286:283–290
(
10.1016/S0378-1119(02)00424-9
) / Gene by W Namwat (2002) -
Paris JM, Barriere JC, Smith C, Bost PE (1990) The chemistry of pristinamycins. Recent progress in the chemical synthesis of antibiotics. Springer, Berlin Heidelberg New York, pp 183–248
(
10.1007/978-3-642-75617-7_6
) / The chemistry of pristinamycins. Recent progress in the chemical synthesis of antibiotics by JM Paris (1990) -
Yamada Y, Nihira T, Sakuda S (1997) Butyrolactone autoregulators, inducers of virginiamycin in Streptomyces virginiae: their structures, biosynthesis, recepter proteins, and induction of virginiamycin biosynthesis. In: Strolhl WR (ed) Biotechnology of antibiotics. Marcel Dekker, New York, pp 63–79
(
10.1201/b14856-4
) / Biotechnology of antibiotics by Y Yamada (1997) -
Molinero AA, Kingston DGI, Reed JW (1989) Biosynthesis of antibiotics of the virginiamycin family. 6. Biosynthesis of virginiamycin S1. J Nat Prod 52:99–108
(
10.1021/np50061a013
) / J Nat Prod by AA Molinero (1989) -
Reed JW, Purvis MB, Kingston DGI, Biot A, Gossele F (1989) Biosynthesis of antibiotics of the virginiamycin family. 7. Stereo-and regiochemical studies on the formation of the 3-hydroxypicolinic acid and pipecolic acid units. J Org Chem 54:1161–1165
(
10.1021/jo00266a031
) / J Org Chem by JW Reed (1989) -
Namwat W, Kinoshita H, Nihira T (2002) Identification by heterologous expression and gene disruption of VisA as l-lysine 2-aminotransferase essential for virginiamycin S biosynthesis in Streptomyces virginiae. J Bacteriol 184:4811–4818
(
10.1128/JB.184.17.4811-4818.2002
) / J Bacteriol by W Namwat (2002) -
Broquist HP (1985) The indolizidine alkaoids, slaframine and swainsonine: contaminants in animal forages. Annu Rev Nutr 5:391–409
(
10.1146/annurev.nu.05.070185.002135
) / Annu Rev Nutr by HP Broquist (1985) -
Wickwire BM, Harris CM, Harris TM, Broquist HP (1990) Pipecolic acid biosynthesis in Rhizoctonia leguminicola. I. The lysine saccharopine, Δ1-piperideine-6-carboxylic acid pathway. J Biol Chem 265:14742–14747
(
10.1016/S0021-9258(18)77175-5
) / J Biol Chem by BM Wickwire (1990) -
Wickwire BM, Wagner C, Broquist HP (1990) Pipecolic acid biosynthesis in Rhizoctonia leguminicola. II. Saccharopine oxidase: a unique flavin enzyme involved in pipecolic acid biosynthesis. J Biol Chem 265:14748–14753
(
10.1016/S0021-9258(18)77176-7
) / J Biol Chem by BM Wickwire (1990) -
Kinzel JJ, Bhattacharjee JK (1979) Role of pipecolic acid in the biosynthesis of lysine in Rhodotorula glutinis. J Bacteriol 138:410–417
(
10.1128/JB.138.2.410-417.1979
) / J Bacteriol by JJ Kinzel (1979) -
Kurtz M, Bhattacharjee JK (1975) Biosynthesis of lysine in Rhodotorula glutinis: role of pipecolic acid. J Gen Microbiol 86:103–110
(
10.1099/00221287-86-1-103
) / J Gen Microbiol by M Kurtz (1975) - Rius N, Demain AL (1997) Lysine ε-aminotransferase, the initial enzyme of cephalosporin biosynthesis in actinomycetes. J Microbiol Biotechnol 7:95–100 / J Microbiol Biotechnol by N Rius (1997)
-
Aharonowitz Y, Cohen G, Martin JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46:461–495
(
10.1146/annurev.mi.46.100192.002333
) / Annu Rev Microbiol by Y Aharonowitz (1992) -
Tobin MB, Kovacevic S, Madduri K, Hoskins JA, Skatrud PL, Vining LC, Stuttard C, Miller JR (1991) Localization of the lysine ε-aminotransferase (lat) and Δ-(L-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (pcbAB) genes from Streptomyces clavuligerus and production of lysine ε-aminotransferase activity in Escherichia coli. J Bacteriol 173:6223–6229
(
10.1128/jb.173.19.6223-6229.1991
) / J Bacteriol by MB Tobin (1991) -
Madduri K, Stuttard C, Vining LC (1989) Lysine catabolism in Streptomyces spp. is primarily through cadaverine: β-lactam producers also make α-aminoadipate. J Bacteriol 171:299–302
(
10.1128/jb.171.1.299-302.1989
) -
Fujii T, Narita T, Agematu H, Agata N, Isshiki K (2000) Characterization of l-lysine 6-aminotransferase and its structural gene from Flavobacterium lutescens IFO3084. J Biochem 128:391–397
(
10.1093/oxfordjournals.jbchem.a022766
) / J Biochem by T Fujii (2000) -
Soda K, Misono H, Yamamoto T (1968) l-Lysine:α-ketoglutarate aminotransferase. I. Identification of a product, Δ1-piperideine-6-carboxylic acid. Biochemistry 7:4102–4109
(
10.1021/bi00851a045
) / Biochemistry by K Soda (1968) -
Fujii T, Mukaihara M, Agematu H, Tsunekawa H (2002) Biotransformation of l-lysine to l-pipecolic acid catalyzed by l-lysine 6-aminotransferase and pyrroline-5-carboxylate reductase. Biosci Biotechnol Biochem 66:622–627
(
10.1271/bbb.66.622
) / Biosci Biotechnol Biochem by T Fujii (2002) -
Fujii T, Aritoku Y, Agematu H, Tsunekawa H (2002) Increase in the rate of l-pipecolic acid production using lat-expressing Escherichia coli by lysP and yeiE amplification. Biosci Biotechnol Biochem 66:1981–1984
(
10.1271/bbb.66.1981
) / Biosci Biotechnol Biochem by T Fujii (2002) -
Brandriss MC, Falvey DA (1992) Proline biosynthesis in Saccharomyces cerevisiae: analysis of the PRO3 gene, which encodes Δ1-pyrroline-5-carboxylate reductase. J Bacteriol 174:3782–3788
(
10.1128/jb.174.11.3782-3788.1992
) / J Bacteriol by MC Brandriss (1992) -
Delauney AJ, Verma DP (1990) A soybean gene encoding Δ1-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Mol Gen Genet 221:299–305
(
10.1007/BF00259392
) / Mol Gen Genet by AJ Delauney (1990) - Leisinger T (1987) Biosynthesis of proline. In: Neidhardt FC, Ingraham JL, Low KB, Magasanic B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, pp 345–351 / Escherichia coli and Salmonella typhimurium: cellular and molecular biology by T Leisinger (1987)
-
Smith RJ, Downing SJ, Phang JM, Lodato RF, Aoki TT (1980) Pyrroline-5-carboxylate reductase activity in mammalian cells. Proc Natl Acad Sci USA 77:5221–5225
(
10.1073/pnas.77.9.5221
) / Proc Natl Acad Sci USA by RJ Smith (1980) -
Aspen AJ, Meister A (1962) Conversion of α-aminoadipic acid to l-pipecolic acid by Aspergillus nidulans. Biochemistry 1:606–612
(
10.1021/bi00910a010
) / Biochemistry by AJ Aspen (1962) -
Casqueiro J, Bañuelos O, Sutiérrez S, Martín JF (2001) Metabolic engineering of the lysine pathway for β-lactam overproduction in Penicillium chrysogenum. In: Van Broedkhoven A, Anne J, Shapiro F (eds) Focus on biotechnology, vol.1. Novel frontiers in the production of compounds for biomedical use. Kluwer Academic Publishers, Dordrecht, pp 147–159
(
10.1007/0-306-46885-9_9
) / Focus on biotechnology, vol.1. Novel frontiers in the production of compounds for biomedical use by J Casqueiro (2001) -
Naranjo L, Martin de Valmaseda E, Banuelos O, Lopez P, Riano J, Casqueiro J, Martin JF (2001) Conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase. J Bacteriol 183:7165–7172
(
10.1128/JB.183.24.7165-7172.2001
) / J Bacteriol by L Naranjo (2001) -
Naranjo L, Martin de Valmaseda E, Casqueiro J, Ullan RV, Lamas-Maceiras M, Banuelos O, Martin JF (2004) Inactivation of the lys7 gene, encoding saccharopine reductase in Penicillium chrysogenum, leads to accumulation of the secondary metabolite precursors piperideine-6-carboxylic acid and pipecolic acid from α-aminoadipic acid. Appl Environ Microbiol 70:1031–1039
(
10.1128/AEM.70.2.1031-1039.2004
) / Appl Environ Microbiol by L Naranjo (2004) -
Kuo MS, Yurek DA, Mizsak SA, Cialdella JI, Baczynskyj L, Marshall VP (1999) Biosynthesis of the pipecolate moiety of marcfortine A. J Am Chem Soc 121:1763–1767
(
10.1021/ja983128d
) / J Am Chem Soc by MS Kuo (1999)
Dates
Type | When |
---|---|
Created | 19 years, 7 months ago (Jan. 17, 2006, 10:08 a.m.) |
Deposited | 2 years, 6 months ago (Feb. 14, 2023, 6:34 a.m.) |
Indexed | 4 days, 6 hours ago (Aug. 27, 2025, 12:14 p.m.) |
Issued | 19 years, 7 months ago (Jan. 18, 2006) |
Published | 19 years, 7 months ago (Jan. 18, 2006) |
Published Online | 19 years, 7 months ago (Jan. 18, 2006) |
Published Print | 19 years, 2 months ago (June 1, 2006) |
@article{He_2006, title={Pipecolic acid in microbes: biosynthetic routes and enzymes}, volume={33}, ISSN={1476-5535}, url={http://dx.doi.org/10.1007/s10295-006-0078-3}, DOI={10.1007/s10295-006-0078-3}, number={6}, journal={Journal of Industrial Microbiology & Biotechnology}, publisher={Oxford University Press (OUP)}, author={He, Min}, year={2006}, month=jan, pages={401–407} }