Crossref journal-article
Springer Science and Business Media LLC
Microchimica Acta (297)
Bibliography

Hemelaar, S. R., Nagl, A., Bigot, F., Rodríguez-García, M. M., de Vries, M. P., Chipaux, M., & Schirhagl, R. (2017). The interaction of fluorescent nanodiamond probes with cellular media. Microchimica Acta, 184(4), 1001–1009.

Authors 7
  1. Simon R. Hemelaar (first)
  2. Andreas Nagl (additional)
  3. François Bigot (additional)
  4. Melissa M. Rodríguez-García (additional)
  5. Marcel P. de Vries (additional)
  6. Mayeul Chipaux (additional)
  7. Romana Schirhagl (additional)
References 40 Referenced 76
  1. Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer PR, Jelezko F, Wrachtrup J (2009) Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 8:383–387. doi: 10.1038/nmat2420 (10.1038/nmat2420) / Nat Mater by G Balasubramanian (2009)
  2. Gruber A (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276(80):2012–2014. doi: 10.1126/science.276.5321.2012 (10.1126/science.276.5321.2012) / Science by A Gruber (1997)
  3. Acosta VM, Bauch E, Ledbetter MP, Waxman A, Bouchard LS, Budker D (2010) Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys Rev Lett. doi: 10.1103/PhysRevLett.104.070801 (10.1103/PhysRevLett.104.070801) / Phys Rev Lett by VM Acosta (2010)
  4. Fedotov V, Safronov NA, Yu G, Ermakova G, Matlashov ME, Sidorov-Biryukov DA, Fedotov AB, Belousov VV, Zheltikov AM (2015) Fiber-optic control and thermometry of single-cell thermosensation logic. Sci Rep 5:15737 (10.1038/srep15737) / Sci Rep by V Fedotov (2015)
  5. Rondin L, Tetienne J-P, Hingant T, Roch J-F, Maletinsky P, Jacques V (2014) Magnetometry with nitrogen-vacancy defects in diamond. Rep Prog Phys 77:56503. doi: 10.1088/0034-4885/77/5/056503 (10.1088/0034-4885/77/5/056503) / Rep Prog Phys by L Rondin (2014)
  6. Degen CL (2008) Scanning magnetic field microscope with a diamond single-spin sensor. Appl Phys Lett 92:22–24. doi: 10.1063/1.2943282 (10.1063/1.2943282) / Appl Phys Lett by CL Degen (2008)
  7. Grinolds MS, Hong S, Maletinsky P, Luan L, Lukin MD, Walsworth RL, Yacoby A (2013) Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat Phys 9:215–219. doi: 10.1038/nphys2543 (10.1038/nphys2543) / Nat Phys by MS Grinolds (2013)
  8. Doherty MW, Acosta VM, Jarmola A, Barson MSJ, Manson NB, Budker D, Hollenberg LCL (2014) Temperature shifts of the resonances of the NV-center in diamond. Phys Rev B - Condens Matter Mater Phys. doi: 10.1103/PhysRevB.90.041201 (10.1103/PhysRevB.90.041201) / Phys Rev B - Condens Matter Mater Phys by MW Doherty (2014)
  9. Schirhagl R, Chang K, Loretz M, Degen CL (2014) Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem 65:83–105. doi: 10.1146/annurev-physchem-040513-103659 (10.1146/annurev-physchem-040513-103659) / Annu Rev Phys Chem by R Schirhagl (2014)
  10. Nagl A, Hemelaar SR, Schirhagl R (2015) Improving surface and defect center chemistry of fluorescent Nano-diamonds for imaging purposes – a review. Anal Bioanal Chem. doi: 10.1007/s00216-015-8849-1 (10.1007/s00216-015-8849-1) / Anal Bioanal Chem by A Nagl (2015)
  11. Mohan N, Chen CS, Hsieh HH, Wu Y-C, Chang H-C (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10:3692–3699. doi: 10.1021/nl1021909 (10.1021/nl1021909) / Nano Lett by N Mohan (2010)
  12. Bradac C, Gaebel T, Naidoo N, Rabeau JR, Barnard AS (2009) Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale. Nano Lett 9:3555–3564. doi: 10.1021/nl9017379 (10.1021/nl9017379) / Nano Lett by C Bradac (2009)
  13. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44(14):4743–4768 (10.1039/C4CS00392F) / Chem Soc Rev by OS Wolfbeis (2015)
  14. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424. doi: 10.1002/adma.200801393 (10.1002/adma.200801393) / Adv Mater by S Zhang (2009)
  15. Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE,Vul’, A Ya, Ōsawa E (2005) Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon N Y 43:1722–1730. doi: 10.1016/j.carbon.2005.02.020 (10.1016/j.carbon.2005.02.020)
  16. Korobov MV, Volkov DS, Avramenko NV, Belyaeva LA, Semenyuk PI, Proskurnin MA (2013) Improving the dispersity of detonation nanodiamond: differential scanning calorimetry as a new method of controlling the aggregation state of nanodiamond powders. Nanoscale 5:1529–1536. doi: 10.1039/c2nr33512c (10.1039/c2nr33512c) / Nanoscale by MV Korobov (2013)
  17. Lee JW, Lee S, Jang S, Han KY, Kim Y, Hyun J, Kim SK, Lee Y (2013) Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake. Mol BioSyst 9:1004–1011. doi: 10.1039/c2mb25431j (10.1039/c2mb25431j) / Mol BioSyst by JW Lee (2013)
  18. Capriotti AL, Caracciolo G, Cavaliere C, Colapicchioni V, Piovesana S, Pozzi D, Lagana A (2014) Analytical methods for characterizing the nanoparticle-protein corona. Chromatographia 77:755–769. doi: 10.1007/s10337-014-2677-x (10.1007/s10337-014-2677-x) / Chromatographia by AL Capriotti (2014)
  19. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786. doi: 10.1038/nnano.2012.207 (10.1038/nnano.2012.207) / Nat Nanotechnol by MP Monopoli (2012)
  20. Petri-Fink A, Steitz B, Finka A, Salaklang J, Hofmann H (2008) Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm 68:129–137. doi: 10.1016/j.ejpb.2007.02.024 (10.1016/j.ejpb.2007.02.024) / Eur J Pharm Biopharm by A Petri-Fink (2008)
  21. Lesniak A, Fenaroli F, Monopoli MP, Aberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–5857. doi: 10.1021/nn300223w (10.1021/nn300223w) / ACS Nano by A Lesniak (2012)
  22. Ritz S, Schöttler S, Kotman N, Baier G, Musyanovych A, Kuharev J, Landfester K, Schild H, Jahn O, Tenzer S, Mailänder V (2015) The protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules. doi: 10.1021/acs.biomac.5b00108 (10.1021/acs.biomac.5b00108) / Biomacromolecules by S Ritz (2015)
  23. Rehor I, Mackova H, Filippov SK, Kucka J, Proks V, Slegerova J, Turner S, Van Tendeloo G, Ledvina M, Hruby M, Cigler P (2014) Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings. Chempluschem 79:21–24. doi: 10.1002/cplu.201300339 (10.1002/cplu.201300339) / Chempluschem by I Rehor (2014)
  24. Perevedentseva E, Melnik N, Tsai CY, Lin Y-C, Kazaryan M, Cheng C-L (2011) Effect of surface adsorbed proteins on the photoluminescence of nanodiamond. J Appl Phys. doi: 10.1063/1.3544312 (10.1063/1.3544312) / J Appl Phys by E Perevedentseva (2011)
  25. Tzeng YK, Faklaris O, Chang BM, Kuo Y, Hsu J-H, Chang H-C (2011) Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Int Ed 50:2262–2265. doi: 10.1002/anie.201007215 (10.1002/anie.201007215) / Angew Chem Int Ed by YK Tzeng (2011)
  26. Sotoma S, Iimura J, Igarashi R, Hirosawa KM, Ohnishi H, Mizukami S, Kikuchi K, Fujiwara TK, Shirakawa M, Tochio H (2016) Selective labeling of proteins on living cell membranes using fluorescent nanodiamond probes. Nanomaterials 6(4):56. doi: 10.3390/nano6040056 (10.3390/nano6040056) / Nanomaterials by S Sotoma (2016)
  27. Chen WH, Lee SC, Sabu S, Fang HC, Chung SC, Han CC, Chang HC (2006) Solid-phase extraction and elution on diamond (SPEED): a fast and general platform for proteome analysis with mass spectrometry. Anal Chem 78:4228–4234. doi: 10.1021/ac052085y (10.1021/ac052085y) / Anal Chem by WH Chen (2006)
  28. Kong XL, Huang LCL, Hsu CM, Chen W-H, Han C-C, Chang H-C (2005) High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal Chem 77:259–265. doi: 10.1021/ac048971a (10.1021/ac048971a) / Anal Chem by XL Kong (2005)
  29. Zhang XQ, Chen M, Lam R, Xu X, Osawa E, Ho D (2009) Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3:2609–2616. doi: 10.1021/nn900865g (10.1021/nn900865g) / ACS Nano by XQ Zhang (2009)
  30. McGuinness LP, Yan Y, Stacey A, Simpson DA, Hall LT, Maclaurin D, Prawer S, Mulvaney P, Wrachtrup J, Caruso F, Scholten RE, Hollenberg LCL (2011) Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nanotechnol 6:358–363. doi: 10.1038/nnano.2011.64 (10.1038/nnano.2011.64) / Nat Nanotechnol by LP McGuinness (2011)
  31. Petrakova V, Rehor I, Stursa J, Ledvina M, Nesladek M, Cigler P (2015) Charge-sensitive fluorescent nanosensors created from nanodiamonds. Nanoscale 7:12307–12311. doi: 10.1039/c5nr00712g (10.1039/c5nr00712g) / Nanoscale by V Petrakova (2015)
  32. Petrakova V, Taylor A, Kratochvílova I, Fendrych F, Vacík J, Kucka J, Stursa J, Cigler P, Ledvina M, Fiserova A, Kneppo P, Nesladek M (2012) Luminescence of nanodiamond driven by atomic functionalization: towards novel detection principles. Adv Funct Mater 22:812–819. doi: 10.1002/adfm.201101936 (10.1002/adfm.201101936) / Adv Funct Mater by V Petrakova (2012)
  33. Ong Y, Chipaux M, Nagl A, Schirhagl R (2017) Shape and crystallographic orientation of nanodiamond for quantum sensing. Phys Chem Chem Phys. doi: 10.1039/C6CP07431F (10.1039/C6CP07431F) / Phys Chem Chem Phys by Y Ong (2017)
  34. Sakulkhu U, Maurizi L, Mahmoudi M, Motazacker M, Vries M, Gramoun A, Beuzelin M-GO, Vallee J-P, Rezaee F, Hofmann H (2014) Ex situ evaluation of the composition of protein corona of intravenously injected superparamagnetic nanoparticles in rats. Nanoscale. doi: 10.1039/C4NR02793K (10.1039/C4NR02793K) / Nanoscale by U Sakulkhu (2014)
  35. Hofmann H (2015) Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomater Sci 3:265–278. doi: 10.1039/c4bm00264d (10.1039/c4bm00264d) / Biomater Sci by H Hofmann (2015)
  36. Zhu W, Smith JW, Huang CM (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol. doi: 10.1155/2010/840518 (10.1155/2010/840518) / J Biomed Biotechnol by W Zhu (2010)
  37. Zheng X, Baker H, Hancock WS, Fawaz F, McCaman M, Pungor E Jr (2006) Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnol Prog 22:1294–1300. doi: 10.1021/bp060121o (10.1021/bp060121o) / Biotechnol Prog by X Zheng (2006)
  38. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer SK, Stauber RH (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781. doi: 10.1038/nnano.2013.181 (10.1038/nnano.2013.181) / Nat Nanotechnol by S Tenzer (2013)
  39. Ge C, Tian J, Zhao Y, Chen C, Zhou R, Chai Z (2015) Towards understanding of nanoparticle–protein corona. Arch Toxicol:519–539. doi: 10.1007/s00204-015-1458-0 (10.1007/s00204-015-1458-0)
  40. Shannahan JH, Lai X, Ke PC, Podila R, Brown JM, Witzmann FA (2013) Silver nanoparticle protein corona composition in cell culture media. PLoS One. doi: 10.1371/journal.pone.0074001 (10.1371/journal.pone.0074001) / PLoS One by JH Shannahan (2013)
Dates
Type When
Created 8 years, 7 months ago (Jan. 26, 2017, 10:09 p.m.)
Deposited 8 years, 2 months ago (June 25, 2017, 1:09 a.m.)
Indexed 1 day, 16 hours ago (Aug. 31, 2025, 6:21 a.m.)
Issued 8 years, 7 months ago (Jan. 27, 2017)
Published 8 years, 7 months ago (Jan. 27, 2017)
Published Online 8 years, 7 months ago (Jan. 27, 2017)
Published Print 8 years, 5 months ago (April 1, 2017)
Funders 1
  1. Foundation for Fundamental Research on Matter 10.13039/501100003404

    Region: Europe

    gov (Local government)

    Labels1
    1. FOM
    Awards1
    1. FOM-G36

@article{Hemelaar_2017, title={The interaction of fluorescent nanodiamond probes with cellular media}, volume={184}, ISSN={1436-5073}, url={http://dx.doi.org/10.1007/s00604-017-2086-6}, DOI={10.1007/s00604-017-2086-6}, number={4}, journal={Microchimica Acta}, publisher={Springer Science and Business Media LLC}, author={Hemelaar, Simon R. and Nagl, Andreas and Bigot, François and Rodríguez-García, Melissa M. and de Vries, Marcel P. and Chipaux, Mayeul and Schirhagl, Romana}, year={2017}, month=jan, pages={1001–1009} }