Crossref journal-article
Springer Science and Business Media LLC
Probability Theory and Related Fields (297)
Bibliography

Berger, N., Kenyon, C., Mossel, E., & Peres, Y. (2004). Glauber dynamics on trees and hyperbolic graphs. Probability Theory and Related Fields, 131(3), 311–340.

Authors 4
  1. Noam Berger (first)
  2. Claire Kenyon (additional)
  3. Elchanan Mossel (additional)
  4. Yuval Peres (additional)
References 37 Referenced 91
  1. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs. Book in preparation 2000, Current version available at http://www.stat.berkeley.edu/users/aldous/book.html
  2. van den Berg, J.: A uniqueness condition for Gibbs measures, with application to the 2-dimensional Ising antiferromagnet. Comm. Math. Phys. 152 (1), 161–166 (1993) (10.1007/BF02097061) / Comm. Math. Phys. by Berg (1)
  3. Bleher, P.M., Ruiz, J., Zagrebnov, V.A.: On the purity of limiting Gibbs state for the Ising model on the Bethe lattice. J. Stat. Phys 79, 473–482 (1995) (10.1007/BF02179399) / J. Stat. Phys by Bleher (1995)
  4. Bubley, R., Dyer, M.: Path coupling: a technique for proving rapid mixing in Markov chains. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS), 1997, pp. 223–231
  5. Chen, M.F.: Trilogy of couplings and general formulas for lower bound of spectral gap. Probability towards 2000, Lecture Notes in Statist., 128, Springer, New York, 1998, pp. 123–136 (10.1007/978-1-4612-2224-8_7)
  6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York, 1991 (10.1002/0471200611)
  7. Dyer, M., Greenhill, C.: On Markov chains for independent sets. J. Algor. 35, 17–49 (2000) (10.1006/jagm.1999.1071) / J. Algor. by Dyer (2000)
  8. Evans, W., Kenyon, C., Peres, Y., Schulman, L.J.: Broadcasting on trees and the Ising Model. Ann. Appl. Prob. 10, 410–433 (2000) (10.1214/aoap/1019487349) / Ann. Appl. Prob. by Evans (2000)
  9. Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536–564 (1972) / I. Introduction and relation to other models. Physica by Fortuin (1972)
  10. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22, 89–103 (1971) (10.1007/BF01651330) / Comm. Math. Phys. by Fortuin (1971)
  11. Haggstrom, O., Jonasson, J., Lyons, R.: Explicit isoperimetric constants and phase transitions in the random-cluster model. Ann. Probab. 30, 443–473 (2002) (10.1214/aop/1020107775) / Ann. Probab. by Haggstrom (2002)
  12. Ioffe, D.: A note on the extremality of the disordered state for the Ising model on the Bethe lattice. Lett. Math. Phys. 37, 137–143 (1996) (10.1007/BF00416016) / Lett. Math. Phys. by Ioffe (1996)
  13. Janson, S., Luczak, T., Ruciński, A.: Random Graphs. Wiley, New York, 2000 (10.1002/9781118032718)
  14. Jerrum, M.: A very simple algorithm for estimating the number of k-colorings of a low-degree graph. Rand. Struc. Alg. 7, 157–165 (1995) (10.1002/rsa.3240070205) / Rand. Struc. Alg. by Jerrum (1995)
  15. Jerrum, M., Sinclair, A.: Approximating the permanent. Siam J. Comput. 18, 1149–1178 (1989) (10.1137/0218077) / Siam J. Comput. by Jerrum (1989)
  16. Jerrum, M., Sinclair, A.: Polynomial time approximation algorithms for the Ising model. Siam J. Comput. 22, 1087–1116 (1993) (10.1137/0222066) / Siam J. Comput. by Jerrum (1993)
  17. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, Crete, Greece, 2001 (10.1145/380752.380877)
  18. Katok, S.: Fuchsian Groups. University of Chicago Press, 1992
  19. Kenyon, C., Mossel, E., Peres, Y.: Glauber dynamics on trees and hyperbolic graphs. 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), IEEE Computer Soc., Los Alamitos, CA, 2001, pp. 568–578 (10.1109/SFCS.2001.959933)
  20. Kinnersley, N.G.: The vertex seperation number of a graph equals its path-width. Infor. Proc. Lett. 42, 345–350 (1992) (10.1016/0020-0190(92)90234-M) / Infor. Proc. Lett. by Kinnersley (1992)
  21. Liggett, T.: Interacting particle systems. Springer, New York, 1985 (10.1007/978-1-4613-8542-4)
  22. Luby, M., Vigoda, E.: Approximately Counting Up To Four. In: proceedings of the 29th Annual Symposium on Theory of Computing (STOC), 1997, pp. 682–687 (10.1145/258533.258663)
  23. Luby, M., Vigoda, E.: Fast Convergence of the Glauber Dynamics for Sampling Independent Sets, Statistical physics methods in discrete probability, combinatorics and theoretical computer science. Rand. Struc. Alg. 15, 229–241 (1999) (10.1002/(SICI)1098-2418(199910/12)15:3/4<229::AID-RSA3>3.0.CO;2-X) / Rand. Struc. Alg. by Luby (1999)
  24. Magnus, W.: Noneuclidean tessellations and their groups. Academic Press, New York and London, 1974
  25. Martinelli, F.: Lectures on Glauber dynamics for discrete spin models. Lectures on probability theory and statistics (Saint-Flour, 1997) Lecture Notes in Math. 1717, Springer, Berlin, 1998, pp. 93–191 (10.1007/978-3-540-48115-7_2)
  26. Martinelli, F., Sinclair, A., Weitz, D.: Glauber dynamics on trees: Boundary conditions and mixing time. Preprint 2003, available at http://front.math.ucdavis.edu/math.PR/0307336
  27. Mossel, E.: Reconstruction on trees: Beating the second eigenvalue. Ann. Appl. Probab. 11 (1), 285–300 (2001) (10.1214/aoap/998926994) / Ann. Appl. Probab. by Mossel (1)
  28. Mossel, E.: Recursive reconstruction on periodic trees. Rand. Struc. Alg. 13, 81–97 (1998) (10.1002/(SICI)1098-2418(199808)13:1<81::AID-RSA5>3.0.CO;2-O) / Rand. Struc. Alg. by Mossel (1998)
  29. Mossel, E., Peres Y.: Information flow on trees. To appear in Ann. Appl. Probab., 2003 (10.1214/aoap/1060202828)
  30. Nacu, S.: Glauber dynamics on the cycle is monotone. To appear, Probab. Theory Related Fields, 2003 (10.1007/s00440-003-0279-x)
  31. Paterson, A.L.T.: Amenability. American Mathematical Soc., Providence, 1988 (10.1090/surv/029)
  32. Propp, J., Wilson, D.: Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics. Rand. Struc. Alg. 9, 223–252 (1996) (10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O) / Rand. Struc. Alg. by Propp (1996)
  33. Peres, Y., Winkler, P.: In preparation, 2003
  34. Randall, D., Tetali, P.: Analyzing Glauber dynamics by comparison of Markov chains. J. Math. Phys. 41, 1598–1615 (2000) (10.1063/1.533199) / J. Math. Phys. by Randall (2000)
  35. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Series B 35, 39–61 (1983) (10.1016/0095-8956(83)90079-5) / I. Excluding a forest. J. Comb. Theory Series B by Robertson (1983)
  36. Saloff-Coste, L.: Lectures on finite Markov chains. Lectures on probability theory and statistics (Saint-Flour, 1996) Lecture Notes in Math. 1665, Springer, Berlin, 1997, pp. 301–413 (10.1007/BFb0092621)
  37. Vigoda, E.: Improved bounds for sampling colorings. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 (3), 1555–1569 (2001) / Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. by Vigoda (3)
Dates
Type When
Created 20 years, 7 months ago (Jan. 14, 2005, 3:01 p.m.)
Deposited 3 years, 3 months ago (May 9, 2022, 2:22 p.m.)
Indexed 2 months ago (June 21, 2025, 9:30 p.m.)
Issued 20 years, 7 months ago (Dec. 27, 2004)
Published 20 years, 7 months ago (Dec. 27, 2004)
Published Online 20 years, 7 months ago (Dec. 27, 2004)
Published Print 20 years, 5 months ago (March 1, 2005)
Funders 0

None

@article{Berger_2004, title={Glauber dynamics on trees and hyperbolic graphs}, volume={131}, ISSN={1432-2064}, url={http://dx.doi.org/10.1007/s00440-004-0369-4}, DOI={10.1007/s00440-004-0369-4}, number={3}, journal={Probability Theory and Related Fields}, publisher={Springer Science and Business Media LLC}, author={Berger, Noam and Kenyon, Claire and Mossel, Elchanan and Peres, Yuval}, year={2004}, month=dec, pages={311–340} }