Crossref journal-article
Springer Science and Business Media LLC
Acta Neuropathologica (297)
Authors 7
  1. Malcolm Proudfoot (first)
  2. Nick J. Gutowski (additional)
  3. Dieter Edbauer (additional)
  4. David A. Hilton (additional)
  5. Mark Stephens (additional)
  6. Julia Rankin (additional)
  7. Ian R. A. Mackenzie (additional)
References 57 Referenced 70
  1. Al-Sarraj S, King A, Troakes C et al (2011) p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 122:691–702 (10.1007/s00401-011-0911-2) / Acta Neuropathol by S Al-Sarraj (2011)
  2. Amador-Ortiz C, Lin W-L, Ahmed Z et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445 (10.1002/ana.21154) / Ann Neurol by C Amador-Ortiz (2007)
  3. Ash PEA, Bieniek KF, Gendron TF et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646 (10.1016/j.neuron.2013.02.004) / Neuron by PEA Ash (2013)
  4. Beck J, Poulter M, Hensman D et al (2013) Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 92:345–353 (10.1016/j.ajhg.2013.01.011) / Am J Hum Genet by J Beck (2013)
  5. Bede P, Bokde ALW, Byrne S et al (2013) Multiparametric MRI study of ALS stratified for the C9orf72 genotype. Neurology 81:361–369 (10.1212/WNL.0b013e31829c5eee) / Neurology by P Bede (2013)
  6. Van Blitterswijk M, Baker MC, DeJesus-Hernandez M et al (2013) C9ORF72 repeat expansions in cases with previously identified pathogenic mutations. Neurology 81:1332–1341 (10.1212/WNL.0b013e3182a8250c) / Neurology by M Blitterswijk Van (2013)
  7. Van Blitterswijk M, Dejesus-Hernandez M, Niemantsverdriet E et al (2013) Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurol 12:978–988 (10.1016/S1474-4422(13)70210-2) / Lancet Neurol by M Blitterswijk Van (2013)
  8. Van Blitterswijk M, van Es MA, Hennekam EAM et al (2012) Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21:3776–3784 (10.1093/hmg/dds199) / Hum Mol Genet by M Blitterswijk Van (2012)
  9. Brettschneider J, Van Deerlin VM, Robinson JL et al (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123:825–839 (10.1007/s00401-012-0970-z) / Acta Neuropathol by J Brettschneider (2012)
  10. Brettschneider J, Del Tredici K, Toledo JB et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38 (10.1002/ana.23937) / Ann Neurol by J Brettschneider (2013)
  11. Calvo A, Moglia C, Canosa A et al (2012) Amyotrophic lateral sclerosis/frontotemporal dementia with predominant manifestations of obsessive-compulsive disorder associated to GGGGCC expansion of the c9orf72 gene. J Neurol 259:2723–2725 (10.1007/s00415-012-6640-1) / J Neurol by A Calvo (2012)
  12. Chiò A, Borghero G, Restagno G et al (2012) Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. Brain 135:784–793 (10.1093/brain/awr366) / Brain by A Chiò (2012)
  13. Collins M, Riascos D, Kovalik T et al (2012) The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD–TDP) patients. Acta Neuropathol 124:717–732 (10.1007/s00401-012-1045-x) / Acta Neuropathol by M Collins (2012)
  14. Daoud H, Suhail H, Sabbagh M et al (2012) C9orf72 hexanucleotide repeat expansions as the causative mutation for chromosome 9p21-linked amyotrophic lateral sclerosis and frontotemporal dementia. Arch Neurol 69:1159–1163 (10.1001/archneurol.2012.377) / Arch Neurol by H Daoud (2012)
  15. Dejesus-hernandez M, Mackenzie IRRRR, Boeve BFFFF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256 (10.1016/j.neuron.2011.09.011) / Neuron by M Dejesus-hernandez (2011)
  16. Fratta P, Mizielinska S, Nicoll AJ et al (2012) C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep 2:1016 (10.1038/srep01016) / Sci Rep by P Fratta (2012)
  17. Gendron TF, Bieniek KF, Zhang Y-J et al (2013) Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol 126:829–844 (10.1007/s00401-013-1192-8) / Acta Neuropathol by TF Gendron (2013)
  18. Geschwind DH, Robidoux J, Alarcón M et al (2001) Dementia and neurodevelopmental predisposition: cognitive dysfunction in presymptomatic subjects precedes dementia by decades in frontotemporal dementia. Ann Neurol 50:741–746 (10.1002/ana.10024) / Ann Neurol by DH Geschwind (2001)
  19. Gijselinck I, Van Langenhove T, van der Zee J et al (2012) A C9orf72 promoter repeat expansion in a Flanders–Belgian cohort with disorders of the frontotemporal lobar degeneration–amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11:54–65 (10.1016/S1474-4422(11)70261-7) / Lancet Neurol by I Gijselinck (2012)
  20. Gómez-Tortosa E, Gallego J, Guerrero-López R et al (2013) C9ORF72 hexanucleotide expansions of 20–22 repeats are associated with frontotemporal deterioration. Neurology 80:0–6 (10.1212/WNL.0b013e31827f08ea) / Neurology by E Gómez-Tortosa (2013)
  21. Harley HG, Rundle SA, Macmillan JC et al (1993) Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am J Hum Genet 52:1164–1174 / Am J Hum Genet by HG Harley (1993)
  22. Hensman Moss DJ, Poulter M, Beck J et al (2013) C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology (epub ahead of print) (10.1212/WNL.0000000000000061)
  23. Hodges J (2012) Familial frontotemporal dementia and amyotrophic lateral sclerosis associated with the C9ORF72 hexanucleotide repeat. Brain 135:652–655 (10.1093/brain/aws033) / Brain by J Hodges (2012)
  24. King A, Al-Sarraj S, Troakes C et al (2013) Mixed tau, TDP-43 and p62 pathology in FTLD associated with a C9ORF72 repeat expansion and p.Ala239Thr MAPT (tau) variant. Acta Neuropathol 125:303–310 (10.1007/s00401-012-1050-0) / Acta Neuropathol by A King (2013)
  25. Lagier-Tourenne C, Baughn M, Rigo F et al (2013) Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci USA 110:E4530–E4539 (10.1073/pnas.1318835110) / Proc Natl Acad Sci USA by C Lagier-Tourenne (2013)
  26. Lee J-MJ-H, Ramos EM, Gillis T et al (2012) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78:690–695 (10.1212/WNL.0b013e318249f683) / Neurology by J-MJ-H Lee (2012)
  27. Lindquist SG, Duno M, Batbayli M et al (2013) Corticobasal and ataxia syndromes widen the spectrum of C9ORF72 hexanucleotide expansion disease. Clin Genet 83:279–283 (10.1111/j.1399-0004.2012.01903.x) / Clin Genet by SG Lindquist (2013)
  28. Mackenzie IR a, Frick P, Neumann M (2013) The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathol (10.1007/s00401-013-1232-4)
  29. Mackenzie IRA, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD–TDP pathology. Acta Neuropathol 122:111–113 (10.1007/s00401-011-0845-8) / Acta Neuropathol by IRA Mackenzie (2011)
  30. Mackenzie IR, Arzberger T, Kremmer E et al (2013) Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol 126:859–879 (10.1007/s00401-013-1181-y) / Acta Neuropathol by IR Mackenzie (2013)
  31. Mahoney CJ, Beck J, Rohrer JD et al (2012) Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain 135:736–750 (10.1093/brain/awr361) / Brain by CJ Mahoney (2012)
  32. Majounie E, Renton AE, Mok K et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11:323–330 (10.1016/S1474-4422(12)70043-1) / Lancet Neurol by E Majounie (2012)
  33. Mizielinska S, Lashley T, Norona FE et al (2013) C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol 126:845–857 (10.1007/s00401-013-1200-z) / Acta Neuropathol by S Mizielinska (2013)
  34. Mori K, Arzberger T, Grässer F a et al (2013) Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol 126:881–893 (10.1007/s00401-013-1189-3) / Acta Neuropathol by K Mori (2013)
  35. Mori K, Lammich S, Mackenzie IR a et al (2013) hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125:413–423 (10.1007/s00401-013-1088-7) / Acta Neuropathol by K Mori (2013)
  36. Mori K, Weng S-M, Arzberger T et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–1338 (10.1126/science.1232927) / Science by K Mori (2013)
  37. Morita M, Al-Chalabi A, Andersen PM et al (2006) A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66:839–844 (10.1212/01.wnl.0000200048.53766.b4) / Neurology by M Morita (2006)
  38. Murray ME, DeJesus-Hernandez M, Rutherford NJ et al (2011) Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol 122:673–690 (10.1007/s00401-011-0907-y) / Acta Neuropathol by ME Murray (2011)
  39. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS–FTD. Neuron 72:257–268 (10.1016/j.neuron.2011.09.010) / Neuron by AE Renton (2011)
  40. Restagno G, Brunetti M, Ossola I et al (2012) ALS/FTD phenotype in two Sardinian families carrying both C9ORF72 and TARDBP mutations. J Neurol Neurosurg Psychiatry 83:730–733 (10.1136/jnnp-2012-302219) / J Neurol Neurosurg Psychiatry by G Restagno (2012)
  41. Ringman JM, Diaz-Olavarrieta C, Rodriguez Y et al (2005) Neuropsychological function in nondemented carriers of presenilin-1 mutations. Neurology 65:552–558 (10.1212/01.wnl.0000172919.50001.d6) / Neurology by JM Ringman (2005)
  42. Rogalski E, Johnson N, Weintraub S, Mesulam M (2008) Increased frequency of learning disability in patients with primary progressive aphasia and their first-degree relatives. Arch Neurol 65:244–248 (10.1001/archneurol.2007.34) / Arch Neurol by E Rogalski (2008)
  43. Rutherford NJ, Heckman MG, Dejesus-Hernandez M et al (2012) Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype. Neurobiol Aging 33(2950):e5–e7 / Neurobiol Aging by NJ Rutherford (2012)
  44. Seelaar H, Rohrer JD, Pijnenburg YAL et al (2011) Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 82:476–486 (10.1136/jnnp.2010.212225) / J Neurol Neurosurg Psychiatry by H Seelaar (2011)
  45. Sha SJ, Takada LTLLT, Rankin KKP et al (2012) Frontotemporal dementia due to C9ORF72 mutations: clinical and imaging features. Neurology 79:1002–1011 (10.1212/WNL.0b013e318268452e) / Neurology by SJ Sha (2012)
  46. Smith BN, Newhouse S, Shatunov A et al (2013) The C9ORF72 expansion mutation is a common cause of ALS ± FTD in Europe and has a single founder. Eur J Hum Genet 21:102–108 (10.1038/ejhg.2012.98) / Eur J Hum Genet by BN Smith (2013)
  47. Snowden JS, Rollinson S, Thompson JC et al (2012) Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135:693–708 (10.1093/brain/awr355) / Brain by JS Snowden (2012)
  48. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672 (10.1126/science.1154584) / Science by J Sreedharan (2008)
  49. Takada LT, Pimentel MLV, Dejesus-Hernandez M et al (2012) Frontotemporal dementia in a Brazilian kindred with the c9orf72 mutation. Arch Neurol 69:1149–1153 (10.1001/archneurol.2012.650) / Arch Neurol by LT Takada (2012)
  50. Vance C, Al-Chalabi A, Ruddy D et al (2006) Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. Brain 129:868–876 (10.1093/brain/awl030) / Brain by C Vance (2006)
  51. Wegorzewska I, Bell S, Cairns NJ et al (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106:18809–18814 (10.1073/pnas.0908767106) / Proc Natl Acad Sci USA by I Wegorzewska (2009)
  52. Whitwell JL, Weigand SD, Boeve BF et al (2012) Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain 135:794–806 (10.1093/brain/aws001) / Brain by JL Whitwell (2012)
  53. Williams KL, Fifita JA, Vucic S et al (2013) Pathophysiological insights into ALS with C9ORF72 expansions. J Neurol Neurosurg Psychiatry 84:931–935 (10.1136/jnnp-2012-304529) / J Neurol Neurosurg Psychiatry by KL Williams (2013)
  54. Wils H, Kleinberger G, Janssens J et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107:3858–3863 (10.1073/pnas.0912417107) / Proc Natl Acad Sci USA by H Wils (2010)
  55. Xu Y-F, Gendron TF, Zhang Y-J et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30:10851–10859 (10.1523/JNEUROSCI.1630-10.2010) / J Neurosci by Y-F Xu (2010)
  56. Xu Z, Poidevin M, Li X et al (2013) Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci USA 110:7778–7783 (10.1073/pnas.1219643110) / Proc Natl Acad Sci USA by Z Xu (2013)
  57. Zu T, Gibbens B, Doty NS et al (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci USA 108:260–265 (10.1073/pnas.1013343108) / Proc Natl Acad Sci USA by T Zu (2011)
Dates
Type When
Created 11 years, 7 months ago (Jan. 20, 2014, 5:16 a.m.)
Deposited 6 years ago (Aug. 6, 2019, 12:55 p.m.)
Indexed 4 weeks ago (Aug. 2, 2025, 12:29 a.m.)
Issued 11 years, 7 months ago (Jan. 21, 2014)
Published 11 years, 7 months ago (Jan. 21, 2014)
Published Online 11 years, 7 months ago (Jan. 21, 2014)
Published Print 11 years, 5 months ago (March 1, 2014)
Funders 0

None

@article{Proudfoot_2014, title={Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability}, volume={127}, ISSN={1432-0533}, url={http://dx.doi.org/10.1007/s00401-014-1245-7}, DOI={10.1007/s00401-014-1245-7}, number={3}, journal={Acta Neuropathologica}, publisher={Springer Science and Business Media LLC}, author={Proudfoot, Malcolm and Gutowski, Nick J. and Edbauer, Dieter and Hilton, David A. and Stephens, Mark and Rankin, Julia and Mackenzie, Ian R. A.}, year={2014}, month=jan, pages={451–458} }