Crossref journal-article
Springer Science and Business Media LLC
Structural and Multidisciplinary Optimization (297)
Bibliography

Zhang, W., Yuan, J., Zhang, J., & Guo, X. (2015). A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Structural and Multidisciplinary Optimization, 53(6), 1243–1260.

Authors 4
  1. Weisheng Zhang (first)
  2. Jie Yuan (additional)
  3. Jian Zhang (additional)
  4. Xu Guo (additional)
References 40 Referenced 499
  1. Allaire G, Olivier P (2006) Structural optimization with FreeFEM++. Struct Multidiscip Optim 32:173–181 (10.1007/s00158-006-0017-y) / Struct Multidiscip Optim by G Allaire (2006)
  2. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393 (10.1016/j.jcp.2003.09.032) / J Comput Phys by G Allaire (2004)
  3. Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43:1–16 (10.1007/s00158-010-0594-7) / Struct Multidiscip Optim by E Andreassen (2011)
  4. Bendsoe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202 (10.1007/BF01650949) / Struct Optim by MP Bendsoe (1989)
  5. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Engrg 71:197–224 (10.1016/0045-7825(88)90086-2) / Comput Methods Appl Mech Engrg by MP Bendsoe (1988)
  6. Challis V (2010) A discrete level-set topology optimization code written in Matlab. Struct Multidiscip Optim 41:453–464 (10.1007/s00158-009-0430-0) / Struct Multidiscip Optim by V Challis (2010)
  7. Chen SK, Wang MY, Liu AQ (2008) Shape feature control in structural topology optimization. Comput Aided Design 40:951–962 (10.1016/j.cad.2008.07.004) / Comput Aided Design by SK Chen (2008)
  8. Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: A review. Appl Mech Rev 54:331–390 (10.1115/1.1388075) / Appl Mech Rev by HA Eschenauer (2001)
  9. Guest J (2009a) Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 37:463–473 (10.1007/s00158-008-0250-7) / Struct Multidiscip Optim by J Guest (2009)
  10. Guest J (2009b) Topology optimization with multiple phase projection. Comput Method Appl Mech Eng 199:123–135 (10.1016/j.cma.2009.09.023) / Comput Method Appl Mech Eng by J Guest (2009)
  11. Guest J (2015) Optimizing the layout of discrete objects in structures and materials: a projection-based topology optimization approach. Comput Methods Appl Mech Eng 283:330–351 (10.1016/j.cma.2014.09.006) / Comput Methods Appl Mech Eng by J Guest (2015)
  12. Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61:238–254 (10.1002/nme.1064) / Int J Numer Methods Eng by J Guest (2004)
  13. Guest J, Asadpoure A, Ha SH (2011) Eliminating beta-continuation from heaviside projection and density filter algorithms. Struct Multidiscip Optim 44:443–453 (10.1007/s00158-011-0676-1) / Struct Multidiscip Optim by J Guest (2011)
  14. Guo X, Cheng GD (2010) Recent development in structural design and optimization. Acta Mech Sinica 26:807–823 (10.1007/s10409-010-0395-7) / Acta Mech Sinica by X Guo (2010)
  15. Guo X, Zhao K, Wang MY (2005) A new approach for simultaneous shape and topology optimization based on dynamic implicit surface function. Control Cybern 34:255–282 / Control Cybern by X Guo (2005)
  16. Guo X, Zhang WS, Zhong WL (2014a) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81:081009 (10.1115/1.4027609) / J Appl Mech by X Guo (2014)
  17. Guo X, Zhang WS, Zhong WL (2014b) Explicit feature control in structural topology optimization via level set method. Comput Method Appl Mech Eng 272:354–378 (10.1016/j.cma.2014.01.010) / Comput Method Appl Mech Eng by X Guo (2014)
  18. Guo X, Zhang WS, Zhang J (2015) Explicit structural topology optimization based on morphable components with complex shapes. In submission (10.1016/j.cma.2016.07.018)
  19. Ha SH, Guest JK (2014) Optimizing inclusion shapes and patterns in periodic materials using discrete object projection. Struct Multidiscip Optim 50:65–80 (10.1007/s00158-013-1026-2) / Struct Multidiscip Optim by SH Ha (2014)
  20. Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscip Optim 50:1175–1196 (10.1007/s00158-014-1107-x) / Struct Multidiscip Optim by K Liu (2014)
  21. Luo JZ, Luo Z, Chen SK, Tong LY, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Method Appl Mech Eng 198:318–331 (10.1016/j.cma.2008.08.003) / Comput Method Appl Mech Eng by JZ Luo (2008)
  22. Michailidis G (2014) Manufacturing Constraints and multi-phase shape and topology optimization via a level-set method. Doctoral thesis Ecole Polytechnique http://www.cmapx.polytechnique.fr/~michailidis/publis/thesis.pdf
  23. Norato JA, Bellb BK, Tortorellic DA (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327 (10.1016/j.cma.2015.05.005) / Comput Methods Appl Mech Eng by JA Norato (2015)
  24. Otomori M, Yamada T, Izui K, Nishiwaki S (2015) Matlab code for a level set-based topology optimization method using a reaction diffusion equation. Struct Multidiscip Optim 51:1159–1172 (10.1007/s00158-014-1190-z) / Struct Multidiscip Optim by M Otomori (2015)
  25. Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41:1417–1434 (10.1002/(SICI)1097-0207(19980430)41:8<1417::AID-NME344>3.0.CO;2-N) / Int J Numer Methods Eng by J Petersson (1998)
  26. Poulsen TA (2003) A new scheme for imposing minimum length scale in topology optimization. Int J Numer Methods Eng 57:741–760 (10.1002/nme.694) / Int J Numer Methods Eng by TA Poulsen (2003)
  27. Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Struct Multidiscip Optim 21:120–127 (10.1007/s001580050176) / Struct Multidiscip Optim by O Sigmund (2001)
  28. Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25:227–239 (10.1007/s10409-009-0240-z) / Acta Mech Sinica by O Sigmund (2009)
  29. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055 (10.1007/s00158-013-0978-6) / Struct Multidiscip Optim by O Sigmund (2013)
  30. Suresh K (2010) A 199-line Matlab code for Pareto-optimal tracing in topology optimization 42: 665–679 (10.1007/s00158-010-0534-6)
  31. Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24:359–373 (10.1002/nme.1620240207) / Int J Numer Methods Eng by K Svanberg (1987)
  32. Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246 (10.1016/S0045-7825(02)00559-5) / Comput Methods Appl Mech Eng by MY Wang (2003)
  33. Wang FW, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43:767–784 (10.1007/s00158-010-0602-y) / Struct Multidiscip Optim by FW Wang (2011)
  34. Xia Q, Shi TL (2015) Constraints of distance from boundary to skeleton: For the control of length scale in level set based structural topology optimization. Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2015.07.015 / Comput Methods Appl Mech Eng by Q Xia (2015)
  35. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896 (10.1016/0045-7949(93)90035-C) / Comput Struct by YM Xie (1993)
  36. Zhang WS, Zhong WL, Guo X (2014) An explicit length scale control approach in SIMP-based topology optimization. Comput Methods Appl Mech Eng 282:71–86 (10.1016/j.cma.2014.08.027) / Comput Methods Appl Mech Eng by WS Zhang (2014)
  37. Zhang WS, Zhang J, Guo X (2015a) Explicit structural topology optimization via moving morphable components- A revival of shape optimization. In submission
  38. Zhang WS, Zhong WL, Guo X (2015b) Explicit layout control in optimal design of structural systems with multiple embedding components. Comput Methods Appl Mech Eng 290:290–313 (10.1016/j.cma.2015.03.007) / Comput Methods Appl Mech Eng by WS Zhang (2015)
  39. Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336 (10.1016/0045-7825(91)90046-9) / Comput Methods Appl Mech Eng by M Zhou (1991)
  40. Zhou MD, Lazarov BS, Wang FW, Sigmund O (2015) Minimum length scale in topology optimization by geometric constraint. Comput Methods Appl Mech Eng 293:266–28 (10.1016/j.cma.2015.05.003) / Comput Methods Appl Mech Eng by MD Zhou (2015)
Dates
Type When
Created 9 years, 8 months ago (Dec. 9, 2015, 7:30 a.m.)
Deposited 3 years, 3 months ago (May 28, 2022, 3:33 p.m.)
Indexed 49 minutes ago (Aug. 30, 2025, 11:42 a.m.)
Issued 9 years, 8 months ago (Dec. 9, 2015)
Published 9 years, 8 months ago (Dec. 9, 2015)
Published Online 9 years, 8 months ago (Dec. 9, 2015)
Published Print 9 years, 2 months ago (June 1, 2016)
Funders 0

None

@article{Zhang_2015, title={A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model}, volume={53}, ISSN={1615-1488}, url={http://dx.doi.org/10.1007/s00158-015-1372-3}, DOI={10.1007/s00158-015-1372-3}, number={6}, journal={Structural and Multidisciplinary Optimization}, publisher={Springer Science and Business Media LLC}, author={Zhang, Weisheng and Yuan, Jie and Zhang, Jian and Guo, Xu}, year={2015}, month=dec, pages={1243–1260} }