Crossref journal-article
Springer Science and Business Media LLC
Cellular and Molecular Life Sciences (297)
Bibliography

Rao, Y., & Haucke, V. (2011). Membrane shaping by the Bin/amphiphysin/Rvs (BAR) domain protein superfamily. Cellular and Molecular Life Sciences, 68(24), 3983–3993.

Authors 2
  1. Yijian Rao (first)
  2. Volker Haucke (additional)
References 113 Referenced 92
  1. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596 (10.1038/nature04396) / Nature by HT McMahon (2005)
  2. Dharmalingam E, Haeckel A, Pinyol R, Schwintzer L, Koch D, Kessels MM, Qualmann B (2009) F-BAR proteins of the syndapin family shape the plasma membrane and are crucial for neuromorphogenesis. J Neurosci 29:13315–13327 (10.1523/JNEUROSCI.3973-09.2009) / J Neurosci by E Dharmalingam (2009)
  3. Lim KB, Bu W, Goh WI, Koh E, Ong SH, Pawson T, Sudhaharan T, Ahmed S (2008) The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics. J Biol Chem 283:20454–20472 (10.1074/jbc.M710185200) / J Biol Chem by KB Lim (2008)
  4. Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A (2001) Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol 11:1645–1655 (10.1016/S0960-9822(01)00506-1) / Curr Biol by S Krugmann (2001)
  5. Kamioka Y, Fukuhara S, Sawa H, Nagashima K, Masuda M, Matsuda M, Mochizuki N (2004) A novel dynamin-associating molecule, formin-binding protein 17, induces tubular membrane invaginations and participates in endocytosis. J Biol Chem 279:40091–40099 (10.1074/jbc.M404899200) / J Biol Chem by Y Kamioka (2004)
  6. Ho HY, Rohatgi R, Lebensohn AM, Le M, Li J, Gygi SP, Kirschner MW (2004) Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118:203–216 (10.1016/j.cell.2004.06.027) / Cell by HY Ho (2004)
  7. Salazar MA, Kwiatkowski AV, Pellegrini L, Cestra G, Butler MH, Rossman KL, Serna DM, Sondek J, Gertler FB, De Camilli P (2003) Tuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton. J Biol Chem 278:49031–49043 (10.1074/jbc.M308104200) / J Biol Chem by MA Salazar (2003)
  8. Lichte B, Veh RW, Meyer HE, Kilimann MW (1992) Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J 11:2521–2530 (10.1002/j.1460-2075.1992.tb05317.x) / EMBO J by B Lichte (1992)
  9. Sivadon P, Bauer F, Aigle M, Crouzet M (1995) Actin cytoskeleton and budding pattern are altered in the yeast rvs161 mutant: the Rvs161 protein shares common domains with the brain protein amphiphysin. Mol Gen Genet 246:485–495 (10.1007/BF00290452) / Mol Gen Genet by P Sivadon (1995)
  10. David C, McPherson PS, Mundigl O, de Camilli P (1996) A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc Natl Acad Sci USA 93:331–335 (10.1073/pnas.93.1.331) / Proc Natl Acad Sci USA by C David (1996)
  11. Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC (1996) BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet 14:69–77 (10.1038/ng0996-69) / Nat Genet by D Sakamuro (1996)
  12. Tarricone C, Xiao B, Justin N, Walker PA, Rittinger K, Gamblin SJ, Smerdon SJ (2001) The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature 411:215–219 (10.1038/35075620) / Nature by C Tarricone (2001)
  13. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495–499 (10.1126/science.1092586) / Science by BJ Peter (2004)
  14. Blood PD, Voth GA (2006) Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. Proc Natl Acad Sci USA 103:15068–15072 (10.1073/pnas.0603917103) / Proc Natl Acad Sci USA by PD Blood (2006)
  15. Itoh T, Erdmann KS, Roux A, Habermann B, Werner H, De Camilli P (2005) Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell 9:791–804 (10.1016/j.devcel.2005.11.005) / Dev Cell by T Itoh (2005)
  16. Drin G, Antonny B (2010) Amphipathic helices and membrane curvature. FEBS Lett 584:1840–1847 (10.1016/j.febslet.2009.10.022) / FEBS Lett by G Drin (2010)
  17. Bhatia VK, Madsen KL, Bolinger PY, Kunding A, Hedegard P, Gether U, Stamou D (2009) Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J 28:3303–3314 (10.1038/emboj.2009.261) / EMBO J by VK Bhatia (2009)
  18. Cui H, Lyman E, Voth GA (2011) Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys J 100:1271–1279 (10.1016/j.bpj.2011.01.036) / Biophys J by H Cui (2011)
  19. Jao CC, Hegde BG, Gallop JL, Hegde PB, McMahon HT, Haworth IS, Langen R (2010) Roles of amphipathic helices and the bin/amphiphysin/rvs (BAR) domain of endophilin in membrane curvature generation. J Biol Chem 285:20164–20170 (10.1074/jbc.M110.127811) / J Biol Chem by CC Jao (2010)
  20. Masuda M, Takeda S, Sone M, Ohki T, Mori H, Kamioka Y, Mochizuki N (2006) Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J 25:2889–2897 (10.1038/sj.emboj.7601176) / EMBO J by M Masuda (2006)
  21. Gallop JL, Jao CC, Kent HM, Butler PJ, Evans PR, Langen R, McMahon HT (2006) Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 25:2898–2910 (10.1038/sj.emboj.7601174) / EMBO J by JL Gallop (2006)
  22. Ford MG, Mills IG, Peter BJ, Vallis Y, Praefcke GJ, Evans PR, McMahon HT (2002) Curvature of clathrin-coated pits driven by epsin. Nature 419:361–366 (10.1038/nature01020) / Nature by MG Ford (2002)
  23. Campelo F, McMahon HT, Kozlov MM (2008) The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J 95:2325–2339 (10.1529/biophysj.108.133173) / Biophys J by F Campelo (2008)
  24. Bhatia VK, Hatzakis NS, Stamou D (2010) A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin Cell Dev Biol 21:381–390 (10.1016/j.semcdb.2009.12.004) / Semin Cell Dev Biol by VK Bhatia (2010)
  25. Epand RM, Shai Y, Segrest JP, Anantharamaiah GM (1995) Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers 37:319–338 (10.1002/bip.360370504) / Biopolymers by RM Epand (1995)
  26. Cui H, Ayton GS, Voth GA (2009) Membrane binding by the endophilin N-BAR domain. Biophys J 97:2746–2753 (10.1016/j.bpj.2009.08.043) / Biophys J by H Cui (2009)
  27. Wang DS, Shaw G (1995) The association of the C-terminal region of beta I sigma II spectrin to brain membranes is mediated by a PH domain, does not require membrane proteins, and coincides with a inositol-1, 4, 5 triphosphate binding site. Biochem Biophys Res Commun 217:608–615 (10.1006/bbrc.1995.2818) / Biochem Biophys Res Commun by DS Wang (1995)
  28. Karathanassis D, Stahelin RV, Bravo J, Perisic O, Pacold CM, Cho W, Williams RL (2002) Binding of the PX domain of p47(phox) to phosphatidylinositol 3, 4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21:5057–5068 (10.1093/emboj/cdf519) / EMBO J by D Karathanassis (2002)
  29. Ago T, Kuribayashi F, Hiroaki H, Takeya R, Ito T, Kohda D, Sumimoto H (2003) Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proc Natl Acad Sci USA 100:4474–4479 (10.1073/pnas.0735712100) / Proc Natl Acad Sci USA by T Ago (2003)
  30. Carlton JG, Bujny MV, Peter BJ, Oorschot VM, Rutherford A, Arkell RS, Klumperman J, McMahon HT, Cullen PJ (2005) Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J Cell Sci 118:4527–4539 (10.1242/jcs.02568) / J Cell Sci by JG Carlton (2005)
  31. Carlton J, Bujny M, Peter BJ, Oorschot VM, Rutherford A, Mellor H, Klumperman J, McMahon HT, Cullen PJ (2004) Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol 14:1791–1800 (10.1016/j.cub.2004.09.077) / Curr Biol by J Carlton (2004)
  32. Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, Yan D, Selva EM, Lin X (2008) The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell 14:120–131 (10.1016/j.devcel.2007.12.003) / Dev Cell by TY Belenkaya (2008)
  33. Rojas R, Kametaka S, Haft CR, Bonifacino JS (2007) Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol Cell Biol 27:1112–1124 (10.1128/MCB.00156-06) / Mol Cell Biol by R Rojas (2007)
  34. Itoh T, De Camilli P (2006) BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim Biophys Acta 1761:897–912 (10.1016/j.bbalip.2006.06.015) / Biochim Biophys Acta by T Itoh (2006)
  35. Aspenstrom P (1997) A Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton. Curr Biol 7:479–487 (10.1016/S0960-9822(06)00219-3) / Curr Biol by P Aspenstrom (1997)
  36. Roberts-Galbraith RH, Gould KL (2010) Setting the F-BAR: functions and regulation of the F-BAR protein family. Cell Cycle 9:4091–4097 (10.4161/cc.9.20.13587) / Cell Cycle by RH Roberts-Galbraith (2010)
  37. Shimada A, Niwa H, Tsujita K, Suetsugu S, Nitta K, Hanawa-Suetsugu K, Akasaka R, Nishino Y, Toyama M, Chen L, Liu ZJ, Wang BC, Yamamoto M, Terada T, Miyazawa A, Tanaka A, Sugano S, Shirouzu M, Nagayama K, Takenawa T, Yokoyama S (2007) Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129:761–772 (10.1016/j.cell.2007.03.040) / Cell by A Shimada (2007)
  38. Henne WM, Kent HM, Ford MG, Hegde BG, Daumke O, Butler PJ, Mittal R, Langen R, Evans PR, McMahon HT (2007) Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15:839–852 (10.1016/j.str.2007.05.002) / Structure by WM Henne (2007)
  39. Rao Y, Ma Q, Vahedi-Faridi A, Sundborger A, Pechstein A, Puchkov D, Luo L, Shupliakov O, Saenger W, Haucke V (2010) Molecular basis for SH3 domain regulation of F-BAR-mediated membrane deformation. Proc Natl Acad Sci USA 107:8213–8218 (10.1073/pnas.1003478107) / Proc Natl Acad Sci USA by Y Rao (2010)
  40. Wang Q, Navarro MV, Peng G, Molinelli E, Goh SL, Judson BL, Rajashankar KR, Sondermann H (2009) Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proc Natl Acad Sci USA 106:12700–12705 (10.1073/pnas.0902974106) / Proc Natl Acad Sci USA by Q Wang (2009)
  41. Yamagishi A, Masuda M, Ohki T, Onishi H, Mochizuki N (2004) A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem 279:14929–14936 (10.1074/jbc.M309408200) / J Biol Chem by A Yamagishi (2004)
  42. Ahmed S, Goh WI, Bu W (2010) I-BAR domains, IRSp53 and filopodium formation. Semin Cell Dev Biol 21:350–356 (10.1016/j.semcdb.2009.11.008) / Semin Cell Dev Biol by S Ahmed (2010)
  43. Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ, Machesky LM, Futterer K (2005) Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 24:240–250 (10.1038/sj.emboj.7600535) / EMBO J by TH Millard (2005)
  44. Saarikangas J, Zhao H, Pykalainen A, Laurinmaki P, Mattila PK, Kinnunen PK, Butcher SJ, Lappalainen P (2009) Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr Biol 19:95–107 (10.1016/j.cub.2008.12.029) / Curr Biol by J Saarikangas (2009)
  45. Mattila PK, Pykalainen A, Saarikangas J, Paavilainen VO, Vihinen H, Jokitalo E, Lappalainen P (2007) Missing-in-metastasis and IRSp53 deform PI(4, 5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176:953–964 (10.1083/jcb.200609176) / J Cell Biol by PK Mattila (2007)
  46. Tsujita K, Suetsugu S, Sasaki N, Furutani M, Oikawa T, Takenawa T (2006) Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol 172:269–279 (10.1083/jcb.200508091) / J Cell Biol by K Tsujita (2006)
  47. Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155:193–200 (10.1083/jcb.200107075) / J Cell Biol by K Farsad (2001)
  48. Takei K, Slepnev VI, Haucke V, De Camilli P (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1:33–39 (10.1038/9004) / Nat Cell Biol by K Takei (1999)
  49. Frost A, Perera R, Roux A, Spasov K, Destaing O, Egelman EH, De Camilli P, Unger VM (2008) Structural basis of membrane invagination by F-BAR domains. Cell 132:807–817 (10.1016/j.cell.2007.12.041) / Cell by A Frost (2008)
  50. Mizuno N, Jao CC, Langen R, Steven AC (2010) Multiple modes of endophilin-mediated conversion of lipid vesicles into coated tubes: implications for synaptic endocytosis. J Biol Chem 285:23351–23358 (10.1074/jbc.M110.143776) / J Biol Chem by N Mizuno (2010)
  51. Jung N, Haucke V (2007) Clathrin-mediated endocytosis at synapses. Traffic 8:1129–1136 (10.1111/j.1600-0854.2007.00595.x) / Traffic by N Jung (2007)
  52. Teng H, Wilkinson RS (2000) Clathrin-mediated endocytosis near active zones in snake motor boutons. J Neurosci 20:7986–7993 (10.1523/JNEUROSCI.20-21-07986.2000) / J Neurosci by H Teng (2000)
  53. Granseth B, Odermatt B, Royle SJ, Lagnado L (2007) Clathrin-mediated endocytosis: the physiological mechanism of vesicle retrieval at hippocampal synapses. J Physiol 585:681–686 (10.1113/jphysiol.2007.139022) / J Physiol by B Granseth (2007)
  54. Sato K, Ernstrom GG, Watanabe S, Weimer RM, Chen CH, Sato M, Siddiqui A, Jorgensen EM, Grant BD (2009) Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Proc Natl Acad Sci USA 106:1139–1144 (10.1073/pnas.0809541106) / Proc Natl Acad Sci USA by K Sato (2009)
  55. Qualmann B, Kelly RB (2000) Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J Cell Biol 148:1047–1062 (10.1083/jcb.148.5.1047) / J Cell Biol by B Qualmann (2000)
  56. Dawson JC, Legg JA, Machesky LM (2006) Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. Trends Cell Biol 16:493–498 (10.1016/j.tcb.2006.08.004) / Trends Cell Biol by JC Dawson (2006)
  57. Ferguson SM, Raimondi A, Paradise S, Shen H, Mesaki K, Ferguson A, Destaing O, Ko G, Takasaki J, Cremona O, OT E, De Camilli P (2009) Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev Cell 17:811–822 (10.1016/j.devcel.2009.11.005) / Dev Cell by SM Ferguson (2009)
  58. Wu M, Huang B, Graham M, Raimondi A, Heuser JE, Zhuang X, De Camilli P (2010) Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nat Cell Biol 12:902–908 (10.1038/ncb2094) / Nat Cell Biol by M Wu (2010)
  59. Yamada H, Padilla-Parra S, Park SJ, Itoh T, Chaineau M, Monaldi I, Cremona O, Benfenati F, De Camilli P, Coppey-Moisan M, Tramier M, Galli T, Takei K (2009) Dynamic interaction of amphiphysin with N-WASP regulates actin assembly. J Biol Chem 284:34244–34256 (10.1074/jbc.M109.064204) / J Biol Chem by H Yamada (2009)
  60. Boettner DR, D’Agostino JL, Torres OT, Daugherty-Clarke K, Uygur A, Reider A, Wendland B, Lemmon SK, Goode BL (2009) The F-BAR protein Syp1 negatively regulates WASp-Arp2/3 complex activity during endocytic patch formation. Curr Biol 19:1979–1987 (10.1016/j.cub.2009.10.062) / Curr Biol by DR Boettner (2009)
  61. Henne WM, Boucrot E, Meinecke M, Evergren E, Vallis Y, Mittal R, McMahon HT (2010) FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328:1281–1284 (10.1126/science.1188462) / Science by WM Henne (2010)
  62. Reider A, Barker SL, Mishra SK, Im YJ, Maldonado-Baez L, Hurley JH, Traub LM, Wendland B (2009) Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J 28:3103–3116 (10.1038/emboj.2009.248) / EMBO J by A Reider (2009)
  63. Stimpson HE, Toret CP, Cheng AT, Pauly BS, Drubin DG (2009) Early-arriving Syp1p and Ede1p function in endocytic site placement and formation in budding yeast. Mol Biol Cell 20:4640–4651 (10.1091/mbc.E09-05-0429) / Mol Biol Cell by HE Stimpson (2009)
  64. Ramachandran R, Surka M, Chappie JS, Fowler DM, Foss TR, Song BD, Schmid SL (2007) The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J 26:559–566 (10.1038/sj.emboj.7601491) / EMBO J by R Ramachandran (2007)
  65. Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147 (10.1038/nrm1313) / Nat Rev Mol Cell Biol by GJ Praefcke (2004)
  66. Shpetner HS, Herskovits JS, Vallee RB (1996) A binding site for SH3 domains targets dynamin to coated pits. J Biol Chem 271:13–16 (10.1074/jbc.271.1.13) / J Biol Chem by HS Shpetner (1996)
  67. Hinshaw JE (2000) Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 16:483–519 (10.1146/annurev.cellbio.16.1.483) / Annu Rev Cell Dev Biol by JE Hinshaw (2000)
  68. McFadden GI, Ralph SA (2003) Dynamin: the endosymbiosis ring of power? Proc Natl Acad Sci USA 100:3557–3559 (10.1073/pnas.0831049100) / Proc Natl Acad Sci USA by GI McFadden (2003)
  69. Ramachandran R, Schmid SL (2008) Real-time detection reveals that effectors couple dynamin’s GTP-dependent conformational changes to the membrane. EMBO J 27:27–37 (10.1038/sj.emboj.7601961) / EMBO J by R Ramachandran (2008)
  70. Small JV, Celis JE (1978) Filament arrangements in negatively stained cultured cells: the organization of actin. Cytobiologie 16:308–325 / Cytobiologie by JV Small (1978)
  71. Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160:409–421 (10.1083/jcb.200210174) / J Cell Biol by TM Svitkina (2003)
  72. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454 (10.1038/nrm2406) / Nat Rev Mol Cell Biol by PK Mattila (2008)
  73. Fujiwara T, Mammoto A, Kim Y, Takai Y (2000) Rho small G-protein-dependent binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2. Biochem Biophys Res Commun 271:626–629 (10.1006/bbrc.2000.2671) / Biochem Biophys Res Commun by T Fujiwara (2000)
  74. Trichet L, Sykes C, Plastino J (2008) Relaxing the actin cytoskeleton for adhesion and movement with Ena/VASP. J Cell Biol 181:19–25 (10.1083/jcb.200710168) / J Cell Biol by L Trichet (2008)
  75. Shimada A, Takano K, Shirouzu M, Hanawa-Suetsugu K, Terada T, Toyooka K, Umehara T, Yamamoto M, Yokoyama S, Suetsugu S (2010) Mapping of the basic amino-acid residues responsible for tubulation and cellular protrusion by the EFC/F-BAR domain of pacsin2/Syndapin II. FEBS Lett 584:1111–1118 (10.1016/j.febslet.2010.02.058) / FEBS Lett by A Shimada (2010)
  76. Guerrier S, Coutinho-Budd J, Sassa T, Gresset A, Jordan NV, Chen K, Jin WL, Frost A, Polleux F (2009) The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 138:990–1004 (10.1016/j.cell.2009.06.047) / Cell by S Guerrier (2009)
  77. Zaidel-Bar R, Joyce MJ, Lynch AM, Witte K, Audhya A, Hardin J (2010) The F-BAR domain of SRGP-1 facilitates cell–cell adhesion during C. elegans morphogenesis. J Cell Biol 191:761–769 (10.1083/jcb.201005082) / J Cell Biol by R Zaidel-Bar (2010)
  78. Chitu V, Pixley FJ, Macaluso F, Larson DR, Condeelis J, Yeung YG, Stanley ER (2005) The PCH family member MAYP/PSTPIP2 directly regulates F-actin bundling and enhances filopodia formation and motility in macrophages. Mol Biol Cell 16:2947–2959 (10.1091/mbc.E04-10-0914) / Mol Biol Cell by V Chitu (2005)
  79. Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK (2000) Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404:151–158 (10.1038/35004513) / Nature by AS Kim (2000)
  80. Rohatgi R, Ho HY, Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 150:1299–1310 (10.1083/jcb.150.6.1299) / J Cell Biol by R Rohatgi (2000)
  81. Murayama K, Shirouzu M, Kawasaki Y, Kato-Murayama M, Hanawa-Suetsugu K, Sakamoto A, Katsura Y, Suenaga A, Toyama M, Terada T, Taiji M, Akiyama T, Yokoyama S (2007) Crystal structure of the rac activator, Asef, reveals its autoinhibitory mechanism. J Biol Chem 282:4238–4242 (10.1074/jbc.C600234200) / J Biol Chem by K Murayama (2007)
  82. Nezami AG, Poy F, Eck MJ (2006) Structure of the autoinhibitory switch in formin mDia1. Structure 14:257–263 (10.1016/j.str.2005.12.003) / Structure by AG Nezami (2006)
  83. Rao Y, Ruckert C, Saenger W, Haucke V (2011) The early steps of endocytosis: from cargo selection to membrane deformation. Eur J Cell Biol (in press) (10.1016/j.ejcb.2011.02.004)
  84. Eberth A, Lundmark R, Gremer L, Dvorsky R, Koessmeier KT, McMahon HT, Ahmadian MR (2009) A BAR domain-mediated autoinhibitory mechanism for RhoGAPs of the GRAF family. Biochem J 417:371–377 (10.1042/BJ20081535) / Biochem J by A Eberth (2009)
  85. Jian X, Brown P, Schuck P, Gruschus JM, Balbo A, Hinshaw JE, Randazzo PA (2009) Autoinhibition of Arf GTPase-activating protein activity by the BAR domain in ASAP1. J Biol Chem 284:1652–1663 (10.1074/jbc.M804218200) / J Biol Chem by X Jian (2009)
  86. Wu JQ, Pollard TD (2005) Counting cytokinesis proteins globally and locally in fission yeast. Science 310:310–314 (10.1126/science.1113230) / Science by JQ Wu (2005)
  87. Wu JQ, Kuhn JR, Kovar DR, Pollard TD (2003) Spatial and temporal pathway for assembly and constriction of the contractile ring in fission yeast cytokinesis. Dev Cell 5:723–734 (10.1016/S1534-5807(03)00324-1) / Dev Cell by JQ Wu (2003)
  88. Carnahan RH, Gould KL (2003) The PCH family protein, Cdc15p, recruits two F-actin nucleation pathways to coordinate cytokinetic actin ring formation in Schizosaccharomyces pombe. J Cell Biol 162:851–862 (10.1083/jcb.200305012) / J Cell Biol by RH Carnahan (2003)
  89. Roberts-Galbraith RH, Chen JS, Wang J, Gould KL (2009) The SH3 domains of two PCH family members cooperate in assembly of the Schizosaccharomyces pombe contractile ring. J Cell Biol 184:113–127 (10.1083/jcb.200806044) / J Cell Biol by RH Roberts-Galbraith (2009)
  90. Roberts-Galbraith RH, Ohi MD, Ballif BA, Chen JS, McLeod I, McDonald WH, Gygi SP, Yates JR 3rd, Gould KL (2010) Dephosphorylation of F-BAR protein Cdc15 modulates its conformation and stimulates its scaffolding activity at the cell division site. Mol Cell 39:86–99 (10.1016/j.molcel.2010.06.012) / Mol Cell by RH Roberts-Galbraith (2010)
  91. Wu Y, Dowbenko D, Lasky LA (1998) PSTPIP 2, a second tyrosine phosphorylated, cytoskeletal-associated protein that binds a PEST-type protein-tyrosine phosphatase. J Biol Chem 273:30487–30496 (10.1074/jbc.273.46.30487) / J Biol Chem by Y Wu (1998)
  92. Spencer S, Dowbenko D, Cheng J, Li W, Brush J, Utzig S, Simanis V, Lasky LA (1997) PSTPIP: a tyrosine phosphorylated cleavage furrow-associated protein that is a substrate for a PEST tyrosine phosphatase. J Cell Biol 138:845–860 (10.1083/jcb.138.4.845) / J Cell Biol by S Spencer (1997)
  93. Fankhauser C, Reymond A, Cerutti L, Utzig S, Hofmann K, Simanis V (1995) The S. pombe cdc15 gene is a key element in the reorganization of F-actin at mitosis. Cell 82:435–444 (10.1016/0092-8674(95)90432-8) / Cell by C Fankhauser (1995)
  94. Meitinger F, Boehm ME, Hofmann A, Hub B, Zentgraf H, Lehmann WD, Pereira G (2011) Phosphorylation-dependent regulation of the F-BAR protein Hof1 during cytokinesis. Genes Dev 25:875–888 (10.1101/gad.622411) / Genes Dev by F Meitinger (2011)
  95. Bi E (2001) Cytokinesis in budding yeast: the relationship between actomyosin ring function and septum formation. Cell Struct Funct 26:529–537 (10.1247/csf.26.529) / Cell Struct Funct by E Bi (2001)
  96. Lippincott J, Li R (1998) Dual function of Cyk2, a cdc15/PSTPIP family protein, in regulating actomyosin ring dynamics and septin distribution. J Cell Biol 143:1947–1960 (10.1083/jcb.143.7.1947) / J Cell Biol by J Lippincott (1998)
  97. Man Z, Kondo Y, Koga H, Umino H, Nakayama K, Shin HW (2011) Arfaptins are localized to the trans-Golgi by interaction with Arl1, but not Arfs. J Biol Chem 286:11569–11578 (10.1074/jbc.M110.201442) / J Biol Chem by Z Man (2011)
  98. Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, Wilm M, Parton RG, Zerial M (2004) APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116:445–456 (10.1016/S0092-8674(04)00117-5) / Cell by M Miaczynska (2004)
  99. Zhu G, Chen J, Liu J, Brunzelle JS, Huang B, Wakeham N, Terzyan S, Li X, Rao Z, Li G, Zhang XC (2007) Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5. EMBO J 26:3484–3493 (10.1038/sj.emboj.7601771) / EMBO J by G Zhu (2007)
  100. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514 (10.1126/science.279.5350.509) / Science by A Hall (1998)
  101. Sit ST, Manser E (2011) Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci 124:679–683 (10.1242/jcs.064964) / J Cell Sci by ST Sit (2011)
  102. Aspenstrom P (1999) The Rho GTPases have multiple effects on the actin cytoskeleton. Exp Cell Res 246:20–25 (10.1006/excr.1998.4300) / Exp Cell Res by P Aspenstrom (1999)
  103. Hall A, Nobes CD (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 355:965–970 (10.1098/rstb.2000.0632) / Philos Trans R Soc Lond B Biol Sci by A Hall (2000)
  104. Myers KR, Casanova JE (2008) Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends Cell Biol 18:184–192 (10.1016/j.tcb.2008.02.002) / Trends Cell Biol by KR Myers (2008)
  105. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410 (10.1016/0092-8674(92)90164-8) / Cell by AJ Ridley (1992)
  106. Huang M, Weissman JT, Beraud-Dufour S, Luan P, Wang C, Chen W, Aridor M, Wilson IA, Balch WE (2001) Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. J Cell Biol 155:937–948 (10.1083/jcb.200106039) / J Cell Biol by M Huang (2001)
  107. Rao Y, Bian C, Yuan C, Li Y, Chen L, Ye X, Huang Z, Huang M (2006) An open conformation of switch I revealed by Sar1-GDP crystal structure at low Mg2+. Biochem Biophys Res Commun 348:908–915 (10.1016/j.bbrc.2006.07.148) / Biochem Biophys Res Commun by Y Rao (2006)
  108. Antonny B, Beraud-Dufour S, Chardin P, Chabre M (1997) N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36:4675–4684 (10.1021/bi962252b) / Biochemistry by B Antonny (1997)
  109. Goldberg J (1998) Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95:237–248 (10.1016/S0092-8674(00)81754-7) / Cell by J Goldberg (1998)
  110. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846 (10.1242/jcs.01660) / J Cell Sci by K Wennerberg (2005)
  111. Tian L, Nelson DL, Stewart DM (2000) Cdc42-interacting protein 4 mediates binding of the Wiskott-Aldrich syndrome protein to microtubules. J Biol Chem 275:7854–7861 (10.1074/jbc.275.11.7854) / J Biol Chem by L Tian (2000)
  112. Toguchi M, Richnau N, Ruusala A, Aspenstrom P (2010) Members of the CIP4 family of proteins participate in the regulation of platelet-derived growth factor receptor-beta-dependent actin reorganization and migration. Biol Cell 102:215–230 (10.1042/BC20090033) / Biol Cell by M Toguchi (2010)
  113. de Kreuk BJ, Nethe M, Fernandez-Borja M, Anthony EC, Hensbergen PJ, Deelder AM, Plomann M, Hordijk PL (2011) The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration. J Cell Sci (in press) (10.1242/jcs.080630)
Dates
Type When
Created 14 years, 1 month ago (July 16, 2011, 10:51 a.m.)
Deposited 6 years, 2 months ago (June 12, 2019, 5:14 p.m.)
Indexed 5 days, 6 hours ago (Aug. 29, 2025, 5:45 a.m.)
Issued 14 years, 1 month ago (July 17, 2011)
Published 14 years, 1 month ago (July 17, 2011)
Published Online 14 years, 1 month ago (July 17, 2011)
Published Print 13 years, 9 months ago (Dec. 1, 2011)
Funders 0

None

@article{Rao_2011, title={Membrane shaping by the Bin/amphiphysin/Rvs (BAR) domain protein superfamily}, volume={68}, ISSN={1420-9071}, url={http://dx.doi.org/10.1007/s00018-011-0768-5}, DOI={10.1007/s00018-011-0768-5}, number={24}, journal={Cellular and Molecular Life Sciences}, publisher={Springer Science and Business Media LLC}, author={Rao, Yijian and Haucke, Volker}, year={2011}, month=jul, pages={3983–3993} }