Crossref
journal-article
Springer Science and Business Media LLC
Cellular and Molecular Life Sciences (297)
References
224
Referenced
77
-
Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667
(
10.1146/annurev.biochem.77.061606.160747
) / Annu Rev Biochem by AJ Driessen (2008) -
Luirink J, ten Hagen-Jongman CM, van der Weijden CC, Oudega B, High S, Dobberstein B, Kusters R (1994) An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J 13:2289–2296
(
10.1002/j.1460-2075.1994.tb06511.x
) / EMBO J by J Luirink (1994) -
Mainprize IL, Vulcu F, Andrews DW (2007) The signal recognition particle and its receptor in the ER protein targeting in the enzymes vol 25, 3rd edn. In: Dalbey RE, Koehler CM, Tamanoi F (eds) Molecular machines involved in protein transport across cellular membranes. Academic Press, San Diego, pp 177–206
(
10.1016/S1874-6047(07)25008-5
) / Molecular machines involved in protein transport across cellular membranes by IL Mainprize (2007) -
Alken M, Hegde R (2007) The translocation apparatus of the endoplasmic reticulum in the enzymes, vol 25, 3rd edn. In: Dalbey RE, Koehler CM, Tamanoi F (eds) Molecular machines involved in protein transport across cellular membranes. Academic Press, San Diego, pp 207–243
(
10.1016/S1874-6047(07)25009-7
) / Molecular machines involved in protein transport across cellular membranes by M Alken (2007) -
Nakatsukasa K, Brodsky JL (2007) The role of Bip/Kar2p in the translocation of proteins across the ER membrane in the enzymes, vol 25, 3rd edn. In: Dalbey RE, Koehler CM, Tamanoi F (eds) Molecular machines involved in protein transport across cellular membranes. Academic Press, San Diego, pp 245–273
(
10.1016/S1874-6047(07)25010-3
) / Molecular machines involved in protein transport across cellular membranes by K Nakatsukasa (2007) -
von Heijne G (1999) Recent advances in the understanding of membrane protein assembly and structure. Q Rev Biophys 32:285–307
(
10.1017/S0033583500003541
) / Q Rev Biophys by G Heijne von (1999) -
von Heijne G (1986) The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J 5:3021–3027
(
10.1002/j.1460-2075.1986.tb04601.x
) -
von Heijne G, Gavel Y (1988) Topogenic signals in integral membrane proteins. Eur J Biochem 174:671–678
(
10.1111/j.1432-1033.1988.tb14150.x
) / Eur J Biochem by G Heijne von (1988) -
Gavel Y, von Heijne G (1992) The distribution of charged amino acids in mitochondrial inner-membrane proteins suggests different modes of membrane integration for nuclearly and mitochondrially encoded proteins. Eur J Biochem 205:1207–1215
(
10.1111/j.1432-1033.1992.tb16892.x
) / Eur J Biochem by Y Gavel (1992) -
Dalbey RE (1990) Positively charged residues are important determinants of membrane protein topology. Trends Biochem Sci 15:253–257
(
10.1016/0968-0004(90)90047-F
) / Trends Biochem Sci by RE Dalbey (1990) -
Ruiz N, Kahne D, Silhavy TJ (2006) Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4:57–66
(
10.1038/nrmicro1322
) / Nat Rev Microbiol by N Ruiz (2006) -
von Heijne G (1981) Membrane proteins: the amino acid composition of membrane-penetrating segments. Eur J Biochem 120:275–278
(
10.1111/j.1432-1033.1981.tb05700.x
) / Eur J Biochem by G Heijne von (1981) -
Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
(
10.1016/0022-2836(82)90515-0
) / J Mol Biol by J Kyte (1982) -
Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78:3824–3828
(
10.1073/pnas.78.6.3824
) / Proc Natl Acad Sci USA by TP Hopp (1981) -
Eisenberg D, Weiss RM, Terwilliger TC (1982) The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299:371–374
(
10.1038/299371a0
) / Nature by D Eisenberg (1982) -
von Heijne G (1992) Membrane protein structure prediction Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494
(
10.1016/0022-2836(92)90934-C
) / J Mol Biol by G Heijne von (1992) -
Tusnady GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506
(
10.1006/jmbi.1998.2107
) / J Mol Biol by GE Tusnady (1998) - Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182 / Proc Int Conf Intell Syst Mol Biol by EL Sonnhammer (1998)
-
Persson B, Argos P (1997) Prediction of membrane protein topology utilizing multiple sequence alignments. J Protein Chem 16:453–457
(
10.1023/A:1026353225758
) / J Protein Chem by B Persson (1997) -
Jones DT, Taylor WR, Thornton JM (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049
(
10.1021/bi00176a037
) / Biochemistry by DT Jones (1994) -
Rost B, Casadio R, Fariselli P, Sander C (1995) Transmembrane helices predicted at 95% accuracy. Protein Sci 4:521–533
(
10.1002/pro.5560040318
) / Protein Sci by B Rost (1995) -
Moller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653
(
10.1093/bioinformatics/17.7.646
) / Bioinformatics by S Moller (2001) -
Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A (2008) Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci USA 105:7177–7181
(
10.1073/pnas.0711151105
) / Proc Natl Acad Sci USA by A Bernsel (2008) -
Viklund H, Elofsson A (2004) Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci 13:1908–1917
(
10.1110/ps.04625404
) / Protein Sci by H Viklund (2004) -
Jones DT (1998) Do transmembrane protein superfolds exist? FEBS Lett 423:281–285
(
10.1016/S0014-5793(98)00095-7
) / FEBS Lett by DT Jones (1998) -
Jones DT (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23:538–544
(
10.1093/bioinformatics/btl677
) / Bioinformatics by DT Jones (2007) -
Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036
(
10.1016/j.jmb.2004.03.016
) / J Mol Biol by L Kall (2004) -
Kall L, Krogh A, Sonnhammer EL (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21[Suppl 1]:i251–i257
(
10.1093/bioinformatics/bti1014
) -
Viklund H, Elofsson A (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24:1662–1668
(
10.1093/bioinformatics/btn221
) / Bioinformatics by H Viklund (2008) -
Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37[Suppl 2]:W465–W468. doi: 10.1093/nar/gkp363
(
10.1093/nar/gkp363
) -
Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755–775
(
10.1146/annurev.biochem.70.1.755
) / Annu Rev Biochem by RJ Keenan (2001) -
Walter P, Blobel G (1981) Translocation of proteins across the endoplasmic reticulum III Signal recognition protein (SRP) causes signal sequence-dependent and site- specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91:557–561
(
10.1083/jcb.91.2.557
) / J Cell Biol by P Walter (1981) -
Tajima S, Lauffer L, Rath VL, Walter P (1986) The signal recognition particle receptor is a complex that contains two distinct polypeptide chains. J Cell Biol 103:1167–1178
(
10.1083/jcb.103.4.1167
) / J Cell Biol by S Tajima (1986) -
Valent QA, Scotti PA, High S, de Gier JW, von Heijne G, Lentzen G, Wintermeyer W, Oudega B, Luirink J (1998) The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J 17:2504–2512
(
10.1093/emboj/17.9.2504
) / EMBO J by QA Valent (1998) -
Prinz A, Behrens C, Rapoport TA, Hartmann E, Kalies KU (2000) Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA. EMBO J 19:1900–1906
(
10.1093/emboj/19.8.1900
) / EMBO J by A Prinz (2000) -
Bradshaw N, Neher SB, Booth DS, Walter P (2009) Signal sequences activate the catalytic switch of SRP RNA. Science 323:127–130
(
10.1126/science.1165971
) / Science by N Bradshaw (2009) -
Ulbrandt ND, Newitt JA, Bernstein HD (1997) The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88:187–196
(
10.1016/S0092-8674(00)81839-5
) / Cell by ND Ulbrandt (1997) - Luirink J, Sinning I (2004) SRP-mediated protein targeting: structure and function revisited. Biochim Biophys Acta 1694:17–35 / Biochim Biophys Acta by J Luirink (2004)
-
Phillips GJ, Silhavy TJ (1992) The E. coli ffh gene is necessary for viability and efficient protein export. Nature 359:744–746
(
10.1038/359744a0
) / Nature by GJ Phillips (1992) -
Zanen G, Antelmann H, Meima R, Jongbloed JD, Kolkman M, Hecker M, van Dijl JM, Quax WJ (2006) Proteomic dissection of potential signal recognition particle dependence in protein secretion by Bacillus subtilis. Proteomics 6:3636–3648
(
10.1002/pmic.200500560
) / Proteomics by G Zanen (2006) -
Zanen G, Houben EN, Meima R, Tjalsma H, Jongbloed JD, Westers H, Oudega B, Luirink J, van Dijl JM, Quax WJ (2005) Signal peptide hydrophobicity is critical for early stages in protein export by Bacillus subtilis. FEBS J 272:4617–4630
(
10.1111/j.1742-4658.2005.04777.x
) / FEBS J by G Zanen (2005) -
Nakamura K, Nishiguchi M, Honda K, Yamane K (1994) The Bacillus subtilis SRP54 homologue, Ffh, has an intrinsic GTPase activity and forms a ribonucleoprotein complex with small cytoplasmic RNA in vivo. Biochem Biophys Res Commun 199:1394–1399
(
10.1006/bbrc.1994.1385
) / Biochem Biophys Res Commun by K Nakamura (1994) -
Oguro A, Kakeshita H, Honda K, Takamatsu H, Nakamura K, Yamane K (1995) srb: a Bacillus subtilis gene encoding a homologue of the alpha-subunit of the mammalian signal recognition particle receptor. DNA Res 2:95–100
(
10.1093/dnares/2.2.95
) / DNA Res by A Oguro (1995) -
Nakamura K, Yahagi S, Yamazaki T, Yamane K (1999) Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J Biol Chem 274:13569–13576
(
10.1074/jbc.274.19.13569
) / J Biol Chem by K Nakamura (1999) -
Struck JC, Vogel DW, Ulbrich N, Erdmann VA (1988) The Bacillus subtilis scRNA is related to the 4.5S RNA from Escherichia coli. Nucleic Acids Res 16:2719
(
10.1093/nar/16.6.2719
) -
Nishiguchi M, Honda K, Amikura R, Nakamura K, Yamane K (1994) Structural requirements of Bacillus subtilis small cytoplasmic RNA for cell growth, sporulation, and extracellular enzyme production. J Bacteriol 176:157–165
(
10.1128/jb.176.1.157-165.1994
) / J Bacteriol by M Nishiguchi (1994) -
Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O’Reilly M, O’Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JF, Sekiguchi J, Sekowska A, Seror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100:4678–4683
(
10.1073/pnas.0730515100
) / Proc Natl Acad Sci USA by K Kobayashi (2003) -
Nakamura K, Imai Y, Nakamura A, Yamane K (1992) Small cytoplasmic RNA of Bacillus subtilis: functional relationship with human signal recognition particle 7S RNA and Escherichia coli 4.5S RNA. J Bacteriol 174:2185–2192
(
10.1128/jb.174.7.2185-2192.1992
) / J Bacteriol by K Nakamura (1992) -
Forsyth RA, Haselbeck RJ, Ohlsen KL, Yamamoto RT, Xu H, Trawick JD, Wall D, Wang L, Brown-Driver V, Froelich JM, King CKGP, McCarthy M, Malone C, Misiner B, Robbins D, Tan Z, Zhu ZY,Carr G, Mosca DA, Zamudio C, Foulkes JG, Zyskind, JW (2002) A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43:1387–1400
(
10.1046/j.1365-2958.2002.02832.x
) -
Thanassi JA, Hartman-Neumann SL, Dougherty TJ, Dougherty BA, Pucci MJ (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res 30:3152–3162
(
10.1093/nar/gkf418
) / Nucleic Acids Res by JA Thanassi (2002) -
Carpenter PB, Hanlon DW, Ordal GW (1992) flhF, a Bacillus subtilis flagellar gene that encodes a putative GTP-binding protein. Mol Microbiol 6:2705–2713
(
10.1111/j.1365-2958.1992.tb01447.x
) / Mol Microbiol by PB Carpenter (1992) -
Salvetti S, Ghelardi E, Celandroni F, Ceragioli M, Giannessi F, Senesi S (2007) FlhF, a signal recognition particle-like GTPase, is involved in the regulation of flagellar arrangement, motility behaviour and protein secretion in Bacillus cereus. Microbiology 153:2541–2552
(
10.1099/mic.0.2006/005553-0
) / Microbiology by S Salvetti (2007) -
Bange G, Petzold G, Wild K, Parlitz RO, Sinning I (2007) The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound. GTP Proc Natl Acad Sci USA 104:13621–13625
(
10.1073/pnas.0702570104
) / GTP Proc Natl Acad Sci USA by G Bange (2007) -
Zanen G, Antelmann H, Westers H, Hecker M, van Dijl JM, Quax WJ (2004) FlhF, the third signal recognition particle-GTPase of Bacillus subtilis, is dispensable for protein secretion. J Bacteriol 186:5956–5960
(
10.1128/JB.186.17.5956-5960.2004
) / J Bacteriol by G Zanen (2004) -
Crowley PJ, Svensater G, Snoep JL, Bleiweis AS, Brady LJ (2004) An ffh mutant of Streptococcus mutans is viable and able to physiologically adapt to low pH in continuous culture. FEMS Microbiol Lett 234:315–324
(
10.1111/j.1574-6968.2004.tb09550.x
) / FEMS Microbiol Lett by PJ Crowley (2004) -
Hasona A, Crowley PJ, Levesque CM, Mair RW, Cvitkovitch DG, Bleiweis AS, Brady LJ (2005) Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proc Natl Acad Sci USA 102:17466–17471
(
10.1073/pnas.0508778102
) / Proc Natl Acad Sci USA by A Hasona (2005) -
Kremer BH, van der Kraan M, Crowley PJ, Hamilton IR, Brady LJ, Bleiweis AS (2001) Characterization of the sat operon in Streptococcus mutans: evidence for a role of Ffh in acid tolerance. J Bacteriol 183:2543–2552
(
10.1128/JB.183.8.2543-2552.2001
) / J Bacteriol by BH Kremer (2001) -
Hasona A, Zuobi-Hasona K, Crowley PJ, Abranches J, Ruelf MA, Bleiweis AS, Brady LJ (2007) Membrane composition changes and physiological adaptation by Streptococcus mutans signal recognition particle pathway mutants. J Bacteriol 189:1219–1230
(
10.1128/JB.01146-06
) / J Bacteriol by A Hasona (2007) -
Rose RW, Bruser T, Kissinger JC, Pohlschroder M (2002) Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45:943–950
(
10.1046/j.1365-2958.2002.03090.x
) / Mol Microbiol by RW Rose (2002) -
Zwieb C, Eichler J (2002) Getting on target: the archaeal signal recognition particle. Archaea 1:27–34
(
10.1155/2002/729649
) / Archaea by C Zwieb (2002) -
Kaine BP (1990) Structure of the archaebacterial 7S RNA molecule. Mol Gen Genet 221:315–321
(
10.1007/BF00259394
) / Mol Gen Genet by BP Kaine (1990) -
Hainzl T, Huang S, Sauer-Eriksson AE (2007) Interaction of signal-recognition particle 54 GTPase domain and signal-recognition particle RNA in the free signal-recognition particle. Proc Natl Acad Sci USA 104:14911–14916
(
10.1073/pnas.0702467104
) / Proc Natl Acad Sci USA by T Hainzl (2007) -
Bernstein HD, Poritz MA, Strub K, Hoben PJ, Brenner S, Walter P (1989) Model for signal sequence recognition from amino-acid sequence of 54 K subunit of signal recognition particle. Nature 340:482–486
(
10.1038/340482a0
) / Nature by HD Bernstein (1989) -
Romisch K, Webb J, Herz J, Prehn S, Frank R, Vingron M, Dobberstein B (1989) Homology of 54 K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains. Nature 340:478–482
(
10.1038/340478a0
) / Nature by K Romisch (1989) -
Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM (2004) Substrate twinning activates the signal recognition particle and its receptor. Nature 427:215–221
(
10.1038/nature02250
) / Nature by PF Egea (2004) -
Focia PJ, Shepotinovskaya IV, Seidler JA, Freymann DM (2004) Heterodimeric GTPase core of the SRP targeting complex. Science 303:373–377
(
10.1126/science.1090827
) / Science by PJ Focia (2004) -
Bhuiyan SH, Gowda K, Hotokezaka H, Zwieb C (2000) Assembly of archaeal signal recognition particle from recombinant components. Nucleic Acids Res 28:1365–1373
(
10.1093/nar/28.6.1365
) / Nucleic Acids Res by SH Bhuiyan (2000) -
Diener JL, Wilson C (2000) Role of SRP19 in assembly of the Archaeoglobus fulgidus signal recognition particle. Biochemistry 39:12862–12874
(
10.1021/bi001180s
) / Biochemistry by JL Diener (2000) -
Tozik I, Huang Q, Zwieb C, Eichler J (2002) Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii. Nucleic Acids Res 30:4166–4175
(
10.1093/nar/gkf548
) / Nucleic Acids Res by I Tozik (2002) -
Hainzl T, Huang S, Sauer-Eriksson AE (2005) Structural insights into SRP RNA: an induced fit mechanism for SRP assembly. RNA 11:1043–1050
(
10.1261/rna.2080205
) / RNA by T Hainzl (2005) -
Moll R, Schmidtke S, Schafer G (1999) Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens ffh-homologous protein suggest an SRP-like complex in archaea. Eur J Biochem 259:441–448
(
10.1046/j.1432-1327.1999.00065.x
) / Eur J Biochem by R Moll (1999) -
Yurist S, Dahan I, Eichler J (2007) SRP19 is a dispensable component of the signal recognition particle in Archaea. J Bacteriol 189:276–279
(
10.1128/JB.01410-06
) / J Bacteriol by S Yurist (2007) -
Egea PF, Napetschnig J, Walter P, Stroud RM (2008) Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus. PLoS ONE 3:e3528
(
10.1371/journal.pone.0003528
) -
Walter P, Johnson AE (1994) Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 10:87–119
(
10.1146/annurev.cb.10.110194.000511
) / Annu Rev Cell Biol by P Walter (1994) -
Lutcke H (1995) Signal recognition particle (SRP) a ubiquitous initiator of protein translocation. Eur J Biochem 228:531–550
(
10.1111/j.1432-1033.1995.tb20293.x
) / Eur J Biochem by H Lutcke (1995) -
Stroud RM, Walter P (1999) Signal sequence recognition and protein targeting. Curr Opin Struct Biol 9:754–759
(
10.1016/S0959-440X(99)00040-8
) / Curr Opin Struct Biol by RM Stroud (1999) -
Chang DY, Newitt JA, Hsu K, Bernstein HD, Maraia RJ (1997) A highly conserved nucleotide in the Alu domain of SRP RNA mediates translation arrest through high affinity binding to SRP9/14. Nucleic Acids Res 25:1117–1122
(
10.1093/nar/25.6.1117
) / Nucleic Acids Res by DY Chang (1997) -
Zwieb C, Samuelsson T (2000) SRPDB (signal recognition particle database). Nucleic Acids Res 28:171–172
(
10.1093/nar/28.1.171
) / Nucleic Acids Res by C Zwieb (2000) -
de Leeuw E, Poland D, Mol O, Sinning I, ten Hagen-Jongman CM, Oudega B, Luirink J (1997) Membrane association of FtsY, the E. coli SRP receptor. FEBS Lett 416:225–229
(
10.1016/S0014-5793(97)01238-6
) / FEBS Lett by E Leeuw de (1997) -
Powers T, Walter P (1997) Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J 16:4880–4886
(
10.1093/emboj/16.16.4880
) / EMBO J by T Powers (1997) -
Zelazny A, Seluanov A, Cooper A, Bibi E (1997) The NG domain of the prokaryotic signal recognition particle receptor, FtsY, is fully functional when fused to an unrelated integral membrane polypeptide. Proc Natl Acad Sci USA 94:6025–6029
(
10.1073/pnas.94.12.6025
) / Proc Natl Acad Sci USA by A Zelazny (1997) -
Egea PF, Tsuruta H, de Leon GP, Napetschnig J, Walter P, Stroud RM (2008) Structures of the signal recognition particle receptor from the archaeon Pyrococcus furiosus: implications for the targeting step at the membrane. PLoS ONE 3:e3619
(
10.1371/journal.pone.0003619
) -
Gawronski-Salerno J, Coon JST, Focia PJ, Freymann DM (2007) X-ray structure of the T. aquaticus FtsY:GDP complex suggests functional roles for the C-terminal helix of the SRP GTPases. Proteins 66:984–995
(
10.1002/prot.21200
) - Moll R, Schmidtke S, Schaefer G (1996) A putative signal recognition particle receptor alpha subunit (SR alpha) homologue is expressed in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. FEMS Microbiol Lett 137:51–56 / FEMS Microbiol Lett by R Moll (1996)
-
Moll R, Schmidtke S, Petersen A, Schafer G (1997) The signal recognition particle receptor alpha subunit of the hyperthermophilic archaeon Acidianus ambivalens exhibits an intrinsic GTP-hydrolyzing activity. Biochim Biophys Acta 1335:218–230
(
10.1016/S0304-4165(96)00141-9
) / Biochim Biophys Acta by R Moll (1997) -
Eichler J (2000) Archaeal protein translocation crossing membranes in the third domain of life. Eur J Biochem 267:3402–3412
(
10.1046/j.1432-1327.2000.01396.x
) / Eur J Biochem by J Eichler (2000) -
Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669
(
10.1038/nature06384
) / Nature by TA Rapoport (2007) -
Vrontou E, Economou A (2004) Structure and function of SecA, the preprotein translocase nanomotor. Biochim Biophys Acta 1694:67–80
(
10.1016/j.bbamcr.2004.06.003
) / Biochim Biophys Acta by E Vrontou (2004) -
Deitermann S, Sprie GS, Koch HG (2005) A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli. J Biol Chem 280:39077–39085
(
10.1074/jbc.M509647200
) / J Biol Chem by S Deitermann (2005) -
Economou A, Wickner W (1994) SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78:835–843
(
10.1016/S0092-8674(94)90582-7
) / Cell by A Economou (1994) -
Schiebel E, Driessen AJ, Hartl FU, Wickner W (1991) Delta mu H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64:927–939
(
10.1016/0092-8674(91)90317-R
) / Cell by E Schiebel (1991) -
van der Wolk JP, de Wit JG, Driessen AJ (1997) The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. EMBO J 16:7297–7304
(
10.1093/emboj/16.24.7297
) / EMBO J by JP Wolk van der (1997) -
Pogliano JA, Beckwith J (1994) SecD and SecF facilitate protein export in Escherichia coli. EMBO J 13:554–561
(
10.1002/j.1460-2075.1994.tb06293.x
) / EMBO J by JA Pogliano (1994) -
Chen M, Xie K, Yuan J, Yi L, Facey SJ, Pradel N, Wu LF, Kuhn A, Dalbey RE (2005) Involvement of SecDF and YidC in the membrane insertion of M13 procoat mutants. Biochemistry 44:10741–10749
(
10.1021/bi047418k
) / Biochemistry by M Chen (2005) -
Kiefer D, Kuhn A (2007) YidC as an essential and multifunctional component in membrane protein assembly. Int Rev Cytol 259:113–138
(
10.1016/S0074-7696(06)59003-5
) / Int Rev Cytol by D Kiefer (2007) -
Van Der Laan M, Urbanus ML, Ten Hagen-Jongman CM, Nouwen N, Oudega B, Harms N, Driessen AJ, Luirink J (2003) A conserved function of YidC in the biogenesis of respiratory chain complexes. Proc Natl Acad Sci USA 100:5801–5806
(
10.1073/pnas.0636761100
) / Proc Natl Acad Sci USA by M Laan Van Der (2003) -
Price CE, Driessen AJ (2008) YidC is involved in the biogenesis of anaerobic respiratory complexes in the inner membrane of Escherichia coli. J Biol Chem 283:26921–26927
(
10.1074/jbc.M804490200
) / J Biol Chem by CE Price (2008) -
Samuelson JC, Chen M, Jiang F, Moller I, Wiedmann M, Kuhn A, Phillips GJ, Dalbey RE (2000) YidC mediates membrane protein insertion in bacteria. Nature 406:637–641
(
10.1038/35020586
) / Nature by JC Samuelson (2000) -
Jungnickel B, Rapoport TA, Hartmann E (1994) Protein translocation: common themes from bacteria to man. FEBS Lett 346:73–77
(
10.1016/0014-5793(94)00367-X
) / FEBS Lett by B Jungnickel (1994) -
Lyman SK, Schekman R (1997) Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell 88:85–96
(
10.1016/S0092-8674(00)81861-9
) / Cell by SK Lyman (1997) -
Sanders SL, Whitfield KM, Vogel JP, Rose MD, Schekman RW (1992) Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 69:353–365
(
10.1016/0092-8674(92)90415-9
) / Cell by SL Sanders (1992) -
von Heijne G, Abrahmsen L (1989) Species-specific variation in signal peptide design Implications for protein secretion in foreign hosts. FEBS Lett 244:439–446
(
10.1016/0014-5793(89)80579-4
) / FEBS Lett by G Heijne von (1989) -
van Wely KH, Swaving J, Broekhuizen CP, Rose M, Quax WJ, Driessen AJ (1999) Functional identification of the product of the Bacillus subtilis yvaL gene as a SecG homologue. J Bacteriol 181:1786–1792
(
10.1128/JB.181.6.1786-1792.1999
) / J Bacteriol by KH Wely van (1999) -
Schatz PJ, Bieker KL, Ottemann KM, Silhavy TJ, Beckwith J (1991) One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery. EMBO J 10:1749–1757
(
10.1002/j.1460-2075.1991.tb07699.x
) / EMBO J by PJ Schatz (1991) -
Swaving J, van Wely KH, Driessen AJ (1999) Preprotein translocation by a hybrid translocase composed of Escherichia coli and Bacillus subtilis subunits. J Bacteriol 181:7021–7027
(
10.1128/JB.181.22.7021-7027.1999
) / J Bacteriol by J Swaving (1999) -
Rigel NW, Braunstein M (2008) A new twist on an old pathway—accessory Sec [corrected] systems. Mol Microbiol 69:291–302
(
10.1111/j.1365-2958.2008.06294.x
) / Mol Microbiol by NW Rigel (2008) -
Sibbald MJ, Ziebandt AK, Engelmann S, Hecker M, de Jong A, Harmsen HJ, Raangs GC, Stokroos I, Arends JP, Dubois JY, van Dijl JM (2006) Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev 70:755–788
(
10.1128/MMBR.00008-06
) / Microbiol Mol Biol Rev by MJ Sibbald (2006) -
Caspers M, Freudl R (2008) Corynebacterium glutamicum possesses two secA homologous genes that are essential for viability. Arch Microbiol 189:605–610
(
10.1007/s00203-008-0351-0
) / Arch Microbiol by M Caspers (2008) -
Bensing BA, Sullam PM (2002) An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol Microbiol 44:1081–1094
(
10.1046/j.1365-2958.2002.02949.x
) / Mol Microbiol by BA Bensing (2002) -
Wu H, Bu S, Newell P, Chen Q, Fives-Taylor P (2007) Two gene determinants are differentially involved in the biogenesis of Fap1 precursors in Streptococcus parasanguis. J Bacteriol 189:1390–1398
(
10.1128/JB.00836-06
) / J Bacteriol by H Wu (2007) -
Takamatsu D, Bensing BA, Sullam PM (2004) Genes in the accessory sec locus of Streptococcus gordonii have three functionally distinct effects on the expression of the platelet-binding protein GspB. Mol Microbiol 52:189–203
(
10.1111/j.1365-2958.2004.03978.x
) / Mol Microbiol by D Takamatsu (2004) -
Bensing BA, Takamatsu D, Sullam PM (2005) Determinants of the streptococcal surface glycoprotein GspB that facilitate export by the accessory Sec system. Mol Microbiol 58:1468–1481
(
10.1111/j.1365-2958.2005.04919.x
) / Mol Microbiol by BA Bensing (2005) -
Chen Q, Wu H, Fives-Taylor PM (2004) Investigating the role of secA2 in secretion and glycosylation of a fimbrial adhesin in Streptococcus parasanguis FW213. Mol Microbiol 53:843–856
(
10.1111/j.1365-2958.2004.04116.x
) / Mol Microbiol by Q Chen (2004) -
Gibbons HS, Wolschendorf F, Abshire M, Niederweis M, Braunstein M (2007) Identification of two Mycobacterium smegmatis lipoproteins exported by a SecA2-dependent pathway. J Bacteriol 189:5090–5100
(
10.1128/JB.00163-07
) / J Bacteriol by HS Gibbons (2007) -
Bensing BA, Siboo IR, Sullam PM (2007) Glycine residues in the hydrophobic core of the GspB signal sequence route export toward the accessory Sec pathway. J Bacteriol 189:3846–3854
(
10.1128/JB.00027-07
) / J Bacteriol by BA Bensing (2007) -
Bensing BA, Sullam PM (2009) Characterization of Streptococcus gordonii SecA2 as a paralogue of SecA. J Bacteriol 191:3482–3491
(
10.1128/JB.00365-09
) / J Bacteriol by BA Bensing (2009) -
Braunstein M, Espinosa BJ, Chan J, Belisle JT, Jacobs WR Jr (2003) SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol Microbiol 48:453–464
(
10.1046/j.1365-2958.2003.03438.x
) / Mol Microbiol by M Braunstein (2003) -
Chen Q, Sun B, Wu H, Peng Z, Fives-Taylor PM (2007) Differential roles of individual domains in selection of secretion route of a Streptococcus parasanguinis serine-rich adhesin, Fap1. J Bacteriol 189:7610–7617
(
10.1128/JB.00748-07
) / J Bacteriol by Q Chen (2007) -
Bolhuis A, Broekhuizen CP, Sorokin A, van Roosmalen ML, Venema G, Bron S, Quax WJ, van Dijl JM (1998) SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J Biol Chem 273:21217–21224
(
10.1074/jbc.273.33.21217
) / J Biol Chem by A Bolhuis (1998) -
Zweers JC, Barak I, Becher D, Driessen AJ, Hecker M, Kontinen VP, Saller MJ, Vavrova L, van Dijl JM (2008) Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microb Cell Fact 7:10
(
10.1186/1475-2859-7-10
) / Microb Cell Fact by JC Zweers (2008) -
Bunai K, Nozaki M, Kakeshita H, Nemoto T, Yamane K (2005) Quantitation of de novo localized (15)N-labeled lipoproteins and membrane proteins having one and two transmembrane segments in a Bacillus subtilis secA temperature-sensitive mutant using 2D-PAGE and MALDI-TOF MS. J Proteome Res 4:826–836
(
10.1021/pr049755l
) / J Proteome Res by K Bunai (2005) -
Bunai K, Yamane K (2005) Effectiveness and limitation of two-dimensional gel electrophoresis in bacterial membrane protein proteomics and perspectives. J Chromatogr B Analyt Technol Biomed Life Sci 815:227–236
(
10.1016/j.jchromb.2004.08.030
) / J Chromatogr B Analyt Technol Biomed Life Sci by K Bunai (2005) -
Dreisbach A, Otto A, Becher D, Hammer E, Teumer A, Gouw JW, Hecker M, Volker U (2008) Monitoring of changes in the membrane proteome during stationary phase adaptation of Bacillus subtilis using in vivo labeling techniques. Proteomics 8:2062–2076
(
10.1002/pmic.200701081
) / Proteomics by A Dreisbach (2008) -
Wolff S, Hahne H, Hecker M, Becher D (2008) Complementary analysis of the vegetative membrane proteome of the human pathogen Staphylococcus aureus. Mol Cell Proteomics 7:1460–1468
(
10.1074/mcp.M700554-MCP200
) / Mol Cell Proteomics by S Wolff (2008) -
Hahne H, Wolff S, Hecker M, Becher D (2008) From complementarity to comprehensiveness—targeting the membrane proteome of growing Bacillus subtilis by divergent approaches. Proteomics 8:4123–4136
(
10.1002/pmic.200800258
) / Proteomics by H Hahne (2008) -
Campo N, Tjalsma H, Buist G, Stepniak D, Meijer M, Veenhuis M, Westermann M, Muller JP, Bron S, Kok J, Kuipers OP, Jongbloed JD (2004) Subcellular sites for bacterial protein export. Mol Microbiol 53:1583–1599
(
10.1111/j.1365-2958.2004.04278.x
) / Mol Microbiol by N Campo (2004) -
Rosch J, Caparon M (2004) A microdomain for protein secretion in Gram-positive bacteria. Science 304:1513–1515
(
10.1126/science.1097404
) / Science by J Rosch (2004) -
Rosch JW, Caparon MG (2005) The ExPortal: an organelle dedicated to the biogenesis of secreted proteins in Streptococcus pyogenes. Mol Microbiol 58:959–968
(
10.1111/j.1365-2958.2005.04887.x
) / Mol Microbiol by JW Rosch (2005) -
Hunt JF, Weinkauf S, Henry L, Fak JJ, McNicholas P, Oliver DB, Deisenhofer J (2002) Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297:2018–2026
(
10.1126/science.1074424
) / Science by JF Hunt (2002) -
Sharma V, Arockiasamy A, Ronning DR, Savva CG, Holzenburg A, Braunstein M, Jacobs WR Jr, Sacchettini JC (2003) Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc Natl Acad Sci USA 100:2243–2248
(
10.1073/pnas.0538077100
) / Proc Natl Acad Sci USA by V Sharma (2003) -
Osborne AR, Clemons WM Jr, Rapoport TA (2004) A large conformational change of the translocation ATPase SecA. Proc Natl Acad Sci USA 101:10937–10942
(
10.1073/pnas.0401742101
) / Proc Natl Acad Sci USA by AR Osborne (2004) -
Vassylyev DG, Mori H, Vassylyeva MN, Tsukazaki T, Kimura Y, Tahirov TH, Ito K (2006) Crystal structure of the translocation ATPase SecA from Thermus thermophilus reveals a parallel, head-to-head dimer. J Mol Biol 364:248–258
(
10.1016/j.jmb.2006.09.061
) / J Mol Biol by DG Vassylyev (2006) -
Papanikolau Y, Papadovasilaki M, Ravelli RB, McCarthy AA, Cusack S, Economou A, Petratos K (2007) Structure of dimeric SecA, the Escherichia coli preprotein translocase motor. J Mol Biol 366:1545–1557
(
10.1016/j.jmb.2006.12.049
) / J Mol Biol by Y Papanikolau (2007) -
Zimmer J, Nam Y, Rapoport TA (2008) Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455:936–943
(
10.1038/nature07335
) / Nature by J Zimmer (2008) -
Papanikou E, Karamanou S, Economou A (2007) Bacterial protein secretion through the translocase nanomachine. Nat Rev Microbiol 5:839–851
(
10.1038/nrmicro1771
) / Nat Rev Microbiol by E Papanikou (2007) -
Cooper DB, Smith VF, Crane JM, Roth HC, Lilly AA, Randall LL (2008) SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. J Mol Biol 382:74–87
(
10.1016/j.jmb.2008.06.049
) / J Mol Biol by DB Cooper (2008) -
Erlandson KJ, Miller SB, Nam Y, Osborne AR, Zimmer J, Rapoport TA (2008) A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455:984–987
(
10.1038/nature07439
) / Nature by KJ Erlandson (2008) -
Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K, Nureki O (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455:988–991
(
10.1038/nature07421
) / Nature by T Tsukazaki (2008) -
Auer J, Spicker G, Bock A (1991) Presence of a gene in the archaebacterium Methanococcus vannielii homologous to secY of eubacteria. Biochimie 73:683–688
(
10.1016/0300-9084(91)90048-6
) / Biochimie by J Auer (1991) -
Cao TB, Saier MH Jr (2003) The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta 1609:115–125
(
10.1016/S0005-2736(02)00662-4
) / Biochim Biophys Acta by TB Cao (2003) -
Irihimovitch V, Eichler J (2003) Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii. J Biol Chem 278:12881–12887
(
10.1074/jbc.M210762200
) / J Biol Chem by V Irihimovitch (2003) -
Kinch LN, Saier MH Jr, Grishin NV (2002) Sec61beta—a component of the archaeal protein secretory system. Trends Biochem Sci 27:170–171
(
10.1016/S0968-0004(01)02055-2
) / Trends Biochem Sci by LN Kinch (2002) -
Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44
(
10.1038/nature02218
) / Nature by B Berg Van den (2004) - Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA (1998) Signal sequence recognition in posttranslational protein transport across the yeast. ER Membrane Cell 94:795–807 / ER Membrane Cell by K Plath (1998)
-
Pohlschroder M, Hartmann E, Hand NJ, Dilks K, Haddad A (2005) Diversity and evolution of protein translocation. Annu Rev Microbiol 59:91–111
(
10.1146/annurev.micro.59.030804.121353
) / Annu Rev Microbiol by M Pohlschroder (2005) -
Eichler J (2003) Evolution of the prokaryotic protein translocation complex: a comparison of archaeal and bacterial versions of SecDF. Mol Phylogenet Evol 27:504–509
(
10.1016/S1055-7903(03)00015-0
) / Mol Phylogenet Evol by J Eichler (2003) -
Duong F, Wickner W (1997) The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J 16:4871–4879
(
10.1093/emboj/16.16.4871
) / EMBO J by F Duong (1997) -
Economou A, Pogliano JA, Beckwith J, Oliver DB, Wickner W (1995) SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83:1171–1181
(
10.1016/0092-8674(95)90143-4
) / Cell by A Economou (1995) -
Nouwen N, Piwowarek M, Berrelkamp G, Driessen AJ (2005) The large first periplasmic loop of SecD and SecF plays an important role in SecDF functioning. J Bacteriol 187:5857–5860
(
10.1128/JB.187.16.5857-5860.2005
) / J Bacteriol by N Nouwen (2005) -
Pohlschroder M, Prinz WA, Hartmann E, Beckwith J (1997) Protein translocation in the three domains of life: variations on a theme. Cell 91:563–566
(
10.1016/S0092-8674(00)80443-2
) / Cell by M Pohlschroder (1997) -
Yi L, Dalbey RE (2005) Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria (review). Mol Membr Biol 22:101–111
(
10.1080/09687860500041718
) / Mol Membr Biol by L Yi (2005) -
Henry R, Goforth RL, Schunemann (2007) Chloroplast SRP/FtsY and Alb3 in protein integration into the thylakoid membrane. in the enzymes, vol 25, 3rd edn. In: Dalbey RE, Koehler CM Tamanoi F (eds) Molecular machines involved in protein transport across cellular membranes. Academic Press, San Diego, pp 493–521
(
10.1016/S1874-6047(07)25019-X
) -
Serek J, Bauer-Manz G, Struhalla G, Van Den Berg L, Kiefer D, Dalbey R, Kuhn A (2004) Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J 23:294–301
(
10.1038/sj.emboj.7600063
) / EMBO J by J Serek (2004) -
Scotti PA, Urbanus ML, Brunner J, de Gier JW, von Heijne G, van der Does C, Driessen AJ, Oudega B, Luirink J (2000) YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J 19:542–549
(
10.1093/emboj/19.4.542
) / EMBO J by PA Scotti (2000) -
Samuelson JC, Jiang F, Yi L, Chen M, de Gier JW, Kuhn A, Dalbey RE (2001) Function of YidC for the insertion of M13 procoat protein in E. coli: translocation of mutants that show differences in their membrane potential dependence and Sec- requirement. J Biol Chem 16:16
(
10.1074/jbc.M105793200
) -
Nouwen N, Driessen AJ (2002) SecDFyajC forms a heterotetrameric complex with YidC. Mol Microbiol 44:1397–1405
(
10.1046/j.1365-2958.2002.02972.x
) / Mol Microbiol by N Nouwen (2002) -
Xie K, Kiefer D, Nagler G, Dalbey RE, Kuhn A (2006) Different regions of the nonconserved large periplasmic domain of Escherichia coli YidC are involved in the SecF interaction and membrane insertase activity. Biochemistry 45:13401–13408
(
10.1021/bi060826z
) / Biochemistry by K Xie (2006) -
Xie K, Dalbey RE (2008) Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat Rev Microbiol 6:234–244
(
10.1038/nrmicro3595
) / Nat Rev Microbiol by K Xie (2008) -
Kol S, Nouwen N, Driessen AJ (2008) Mechanisms of YidC-mediated insertion and assembly of multimeric membrane protein complexes. J Biol Chem 3505–3525
(
10.1074/jbc.R800029200
) -
van der Laan M, Nouwen NP, Driessen AJ (2005) YidC–an evolutionary conserved device for the assembly of energy-transducing membrane protein complexes. Curr Opin Microbiol 8:182–187
(
10.1016/j.mib.2005.02.004
) / Curr Opin Microbiol by M Laan van der (2005) -
Saaf A, Monne M, de Gier JW, von Heijne G (1998) Membrane topology of the 60-kDa Oxa1p homologue from Escherichia coli. J Biol Chem 273:30415–30418
(
10.1074/jbc.273.46.30415
) / J Biol Chem by A Saaf (1998) -
Oliver DC, Paetzel M (2008) Crystal structure of the major periplasmic domain of the bacterial membrane protein assembly facilitator YidC. J Biol Chem 283:5208–5216
(
10.1074/jbc.M708936200
) / J Biol Chem by DC Oliver (2008) -
Ravaud S, Stjepanovic G, Wild K, Sinning I (2008) The crystal structure of the periplasmic domain of the Escherichia coli membrane protein insertase YidC contains a substrate binding cleft. J Biol Chem 283:9350–9358
(
10.1074/jbc.M710493200
) / J Biol Chem by S Ravaud (2008) -
Yu Z, Koningstein G, Pop A, Luirink J (2008) The conserved third transmembrane segment of YidC contacts nascent Escherichia coli inner membrane proteins. J Biol Chem 283:34635–34642
(
10.1074/jbc.M804344200
) / J Biol Chem by Z Yu (2008) -
Klenner C, Yuan J, Dalbey RE, Kuhn A (2008) The Pf3 coat protein contacts TM1 and TM3 of YidC during membrane biogenesis. FEBS Lett 582:3967–3972
(
10.1016/j.febslet.2008.10.044
) / FEBS Lett by C Klenner (2008) -
Winterfeld S, Imhof N, Roos T, Bar G, Kuhn A, Gerken U (2009) Substrate-induced conformational change of the Escherichia coli membrane insertase YidC. Biochemistry 48:6684–6691
(
10.1021/bi9003809
) / Biochemistry by S Winterfeld (2009) -
van der Laan M, Houben EN, Nouwen N, Luirink J, Driessen AJ (2001) Reconstitution of Sec-dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEG-dependent manner. EMBO Rep 2:519–523
(
10.1093/embo-reports/kve106
) / EMBO Rep by M Laan van der (2001) -
Nargang FE, Preuss M, Neupert W, Herrmann JM (2002) The Oxa1 protein forms a homooligomeric complex and is an essential part of the mitochondrial export translocase in Neurospora crassa. J Biol Chem 277:12846–12853
(
10.1074/jbc.M112099200
) / J Biol Chem by FE Nargang (2002) -
Kohler R, Boehringer D, Greber B, Bingel-Erlenmeyer R, Collinson I, Schaffitzel C, Ban N (2009) YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol Cell 34:344–353
(
10.1016/j.molcel.2009.04.019
) / Mol Cell by R Kohler (2009) -
Jiang F, Chen M, Yi L, de Gier JW, Kuhn A, Dalbey RE (2003) Defining the regions of Escherichia coli YidC that contribute to activity. J Biol Chem 278:48965–48972
(
10.1074/jbc.M307362200
) / J Biol Chem by F Jiang (2003) -
Yuan J, Phillips GJ, Dalbey RE (2007) Isolation of cold-sensitive yidC mutants provides insights into the substrate profile of the YidC insertase and the importance of transmembrane 3 in YidC function. J Bacteriol 189:8961–8972
(
10.1128/JB.01365-07
) / J Bacteriol by J Yuan (2007) -
Yen MR, Harley KT, Tseng YH, Saier MH Jr (2001) Phylogenetic and structural analyses of the oxa1 family of protein translocases. FEMS Microbiol Lett 204:223–231
(
10.1111/j.1574-6968.2001.tb10889.x
) / FEMS Microbiol Lett by MR Yen (2001) -
Tjalsma H, Bron S, van Dijl JM (2003) Complementary impact of paralogous Oxa1-like proteins of Bacillus subtilis on post-translocational stages in protein secretion. J Biol Chem 278:15622–15632
(
10.1074/jbc.M301205200
) / J Biol Chem by H Tjalsma (2003) -
Murakami T, Haga K, Takeuchi M, Sato T (2002) Analysis of the Bacillus subtilis spoIIIJ gene and its paralogue gene, yqjG. J Bacteriol 184:1998–2004
(
10.1128/JB.184.7.1998-2004.2002
) / J Bacteriol by T Murakami (2002) -
Camp AH, Losick R (2008) A novel pathway of intercellular signalling in Bacillus subtilis involves a protein with similarity to a component of type III secretion channels. Mol Microbiol 69:402–417
(
10.1111/j.1365-2958.2008.06289.x
) / Mol Microbiol by AH Camp (2008) -
Serrano M, Vieira F, Moran CP Jr, Henriques AO (2008) Processing of a membrane protein required for cell-to-cell signaling during endospore formation in Bacillus subtilis. J Bacteriol 190:7786–7796
(
10.1128/JB.00715-08
) / J Bacteriol by M Serrano (2008) -
Dong Y, Palmer SR, Hasona A, Nagamori S, Kaback HR, Dalbey RE, Brady LJ (2008) Functional overlap but lack of complete cross-complementation of Streptococcus mutans and Escherichia coli YidC orthologs. J Bacteriol 190:2458–2469
(
10.1128/JB.01366-07
) / J Bacteriol by Y Dong (2008) -
Funes S, Hasona A, Bauerschmitt H, Grubbauer C, Kauff F, Collins R, Crowley PJ, Palmer SR, Brady LJ, Herrmann JM (2009) Independent gene duplications of the YidC/Oxa/Alb3 family enabled a specialized cotranslational function. Proc Natl Acad Sci USA 106:6656–6661
(
10.1073/pnas.0809951106
) / Proc Natl Acad Sci USA by S Funes (2009) -
Natale P, Bruser T, Driessen AJ (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane-distinct translocases and mechanisms. Biochim Biophys Acta 1778:1735–1756
(
10.1016/j.bbamem.2007.07.015
) / Biochim Biophys Acta by P Natale (2008) -
Palmer T, Sargent F, Berks BC (2005) Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175–180
(
10.1016/j.tim.2005.02.002
) / Trends Microbiol by T Palmer (2005) -
Robinson C, Bolhuis A (2004) Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochim Biophys Acta 1694:135–147
(
10.1016/j.bbamcr.2004.03.010
) / Biochim Biophys Acta by C Robinson (2004) -
Sargent F (2007) The twin-arginine transport system: moving folded proteins across membranes. Biochem Soc Trans 35:835–847
(
10.1042/BST0350835
) / Biochem Soc Trans by F Sargent (2007) -
Hatzixanthis K, Palmer T, Sargent F (2003) A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase. Mol Microbiol 49:1377–1390
(
10.1046/j.1365-2958.2003.03642.x
) / Mol Microbiol by K Hatzixanthis (2003) -
Dilks K, Gimenez MI, Pohlschroder M (2005) Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea. J Bacteriol 187:8104–8113
(
10.1128/JB.187.23.8104-8113.2005
) / J Bacteriol by K Dilks (2005) -
Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschroder M, Palmer T (2006) The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci USA 103:17927–17932
(
10.1073/pnas.0607025103
) / Proc Natl Acad Sci USA by DA Widdick (2006) -
Widdick DA, Eijlander RT, van Dijl JM, Kuipers OP, Palmer T (2008) A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life. J Mol Biol 375:595–603
(
10.1016/j.jmb.2007.11.002
) / J Mol Biol by DA Widdick (2008) -
Saint-Joanis B, Demangel C, Jackson M, Brodin P, Marsollier L, Boshoff H, Cole ST (2006) Inactivation of Rv2525c, a substrate of the twin arginine translocation (Tat) system of Mycobacterium tuberculosis, increases beta-lactam susceptibility and virulence. J Bacteriol 188:6669–6679
(
10.1128/JB.00631-06
) / J Bacteriol by B Saint-Joanis (2006) -
Posey JE, Shinnick TM, Quinn FD (2006) Characterization of the twin-arginine translocase secretion system of Mycobacterium smegmatis. J Bacteriol 188:1332–1340
(
10.1128/JB.188.4.1332-1340.2006
) / J Bacteriol by JE Posey (2006) -
McDonough JA, Hacker KE, Flores AR, Pavelka MS Jr, Braunstein M (2005) The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases. J Bacteriol 187:7667–7679
(
10.1128/JB.187.22.7667-7679.2005
) / J Bacteriol by JA McDonough (2005) -
Bronstein PA, Marrichi M, Cartinhour S, Schneider DJ, DeLisa MP (2005) Identification of a twin-arginine translocation system in Pseudomonas syringae pv. tomato DC3000 and its contribution to pathogenicity and fitness. J Bacteriol 187:8450–8461
(
10.1128/JB.187.24.8450-8461.2005
) / J Bacteriol by PA Bronstein (2005) -
Caldelari I, Mann S, Crooks C, Palmer T (2006) The Tat pathway of the plant pathogen Pseudomonas syringae is required for optimal virulence. Mol Plant Microbe Interact 19:200–212
(
10.1094/MPMI-19-0200
) / Mol Plant Microbe Interact by I Caldelari (2006) -
Lavander M, Ericsson SK, Broms JE, Forsberg A (2006) The twin arginine translocation system is essential for virulence of Yersinia pseudotuberculosis. Infect Immun 74:1768–1776
(
10.1128/IAI.74.3.1768-1776.2006
) / Infect Immun by M Lavander (2006) -
De Buck E, Maes L, Meyen E, Van Mellaert L, Geukens N, Anne J, Lammertyn E (2005) Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation. Biochem Biophys Res Commun 331:1413–1420
(
10.1016/j.bbrc.2005.04.060
) / Biochem Biophys Res Commun by E Buck De (2005) -
Rossier O, Cianciotto NP (2005) The Legionella pneumophila tatB gene facilitates secretion of phospholipase C, growth under iron-limiting conditions, and intracellular infection. Infect Immun 73:2020–2032
(
10.1128/IAI.73.4.2020-2032.2005
) / Infect Immun by O Rossier (2005) -
De Buck E, Lammertyn E, Anne J (2008) The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol 16:442–453
(
10.1016/j.tim.2008.06.004
) / Trends Microbiol by E Buck De (2008) -
Cristobal S, de Gier JW, Nielsen H, von Heijne G (1999) Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J 18:2982–2990
(
10.1093/emboj/18.11.2982
) / EMBO J by S Cristobal (1999) -
Tullman-Ercek D, DeLisa MP, Kawarasaki Y, Iranpour P, Ribnicky B, Palmer T, Georgiou G (2007) Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides. J Biol Chem 282:8309–8316
(
10.1074/jbc.M610507200
) / J Biol Chem by D Tullman-Ercek (2007) -
Blaudeck N, Kreutzenbeck P, Freudl R, Sprenger GA (2003) Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane. J Bacteriol 185:2811–2819
(
10.1128/JB.185.9.2811-2819.2003
) / J Bacteriol by N Blaudeck (2003) -
Bogsch E, Brink S, Robinson C (1997) Pathway specificity for a delta pH-dependent precursor thylakoid lumen protein is governed by a ‘Sec-avoidance’ motif in the transfer peptide and a ‘Sec-incompatible’ mature protein. EMBO J 16:3851–3859
(
10.1093/emboj/16.13.3851
) / EMBO J by E Bogsch (1997) -
Cristobal S, Scotti P, Luirink J, von Heijne G, de Gier JW (1999) The signal recognition particle-targeting pathway does not necessarily deliver proteins to the sec-translocase in Escherichia coli. J Biol Chem 274:20068–20070
(
10.1074/jbc.274.29.20068
) / J Biol Chem by S Cristobal (1999) -
Ize B, Gerard F, Wu LF (2002) In vivo assessment of the Tat signal peptide specificity in Escherichia coli. Arch Microbiol 178:548–553
(
10.1007/s00203-002-0488-1
) / Arch Microbiol by B Ize (2002) - Wu LF, Ize B, Chanal A, Quentin Y, Fichant G (2000) Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism. J Mol Microbiol Biotechnol 2:179–189 / J Mol Microbiol Biotechnol by LF Wu (2000)
-
Behrendt J, Standar K, Lindenstrauss U, Bruser T (2004) Topological studies on the twin-arginine translocase component TatC. FEMS Microbiol Lett 234:303–308
(
10.1111/j.1574-6968.2004.tb09548.x
) / FEMS Microbiol Lett by J Behrendt (2004) -
Ki JJ, Kawarasaki Y, Gam J, Harvey BR, Iverson BL, Georgiou G (2004) A periplasmic fluorescent reporter protein and its application in high-throughput membrane protein topology analysis. J Mol Biol 341:901–909
(
10.1016/j.jmb.2004.05.078
) / J Mol Biol by JJ Ki (2004) -
Sargent F, Gohlke U, De Leeuw E, Stanley NR, Palmer T, Saibil HR, Berks BC (2001) Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. Eur J Biochem 268:3361–3367
(
10.1046/j.1432-1327.2001.02263.x
) / Eur J Biochem by F Sargent (2001) -
Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E, Palmer T, Saibil HR, Berks BC (2005) The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci USA 102:10482–10486
(
10.1073/pnas.0503558102
) / Proc Natl Acad Sci USA by U Gohlke (2005) -
Oates J, Barrett CM, Barnett JP, Byrne KG, Bolhuis A, Robinson C (2005) The Escherichia coli twin-arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex. J Mol Biol 346:295–305
(
10.1016/j.jmb.2004.11.047
) / J Mol Biol by J Oates (2005) -
Alami M, Luke I, Deitermann S, Eisner G, Koch HG, Brunner J, Muller M (2003) Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol Cell 12:937–946
(
10.1016/S1097-2765(03)00398-8
) / Mol Cell by M Alami (2003) -
Bolhuis A, Mathers JE, Thomas JD, Barrett CM, Robinson C (2001) TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276:20213–20219
(
10.1074/jbc.M100682200
) / J Biol Chem by A Bolhuis (2001) -
Holzapfel E, Eisner G, Alami M, Barrett CM, Buchanan G, Luke I, Betton JM, Robinson C, Palmer T, Moser M, Muller M (2007) The entire N-terminal half of TatC is involved in twin-arginine precursor binding. Biochemistry 46:2892–2898
(
10.1021/bi062205b
) / Biochemistry by E Holzapfel (2007) -
Blaudeck N, Kreutzenbeck P, Muller M, Sprenger GA, Freudl R (2005) Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB. J Biol Chem 280:3426–3432
(
10.1074/jbc.M411210200
) / J Biol Chem by N Blaudeck (2005) -
Barnett JP, Eijlander RT, Kuipers OP, Robinson C (2008) A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes. J Biol Chem 283:2534–2542
(
10.1074/jbc.M708134200
) / J Biol Chem by JP Barnett (2008) -
Jongbloed JD, van der Ploeg R, van Dijl JM (2006) Bifunctional TatA subunits in minimal Tat protein translocases. Trends Microbiol 14:2–4
(
10.1016/j.tim.2005.11.001
) / Trends Microbiol by JD Jongbloed (2006) -
Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl JM (2004) Two minimal Tat translocases in Bacillus. Mol Microbiol 54:1319–1325
(
10.1111/j.1365-2958.2004.04341.x
) / Mol Microbiol by JD Jongbloed (2004) -
Jongbloed JD, Antelmann H, Hecker M, Nijland R, Bron S, Airaksinen U, Pries F, Quax WJ, van Dijl JM, Braun PG (2002) Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J Biol Chem 277:44068–44078
(
10.1074/jbc.M203191200
) / J Biol Chem by JD Jongbloed (2002) -
Kouwen TR, van der Ploeg R, Antelmann H, Hecker M, Homuth G, Mader U, van Dijl JM (2009) Overflow of a hyper-produced secretory protein from the Bacillus Sec pathway into the Tat pathway for protein secretion as revealed by proteogenomics. Proteomics 9:1018–1032
(
10.1002/pmic.200800580
) / Proteomics by TR Kouwen (2009) -
Sargent F, Stanley NR, Berks BC, Palmer T (1999) Sec-independent protein translocation in Escherichia coli: a distinct and pivotal role for the TatB protein. J Biol Chem 274:36073–36082
(
10.1074/jbc.274.51.36073
) / J Biol Chem by F Sargent (1999) -
Bolhuis A (2002) Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway? Microbiology 148:3335–3346
(
10.1099/00221287-148-11-3335
) / Microbiology by A Bolhuis (2002) -
Thomas JR, Bolhuis A (2006) The tatC gene cluster is essential for viability in halophilic archaea. FEMS Microbiol Lett 256:44–49
(
10.1111/j.1574-6968.2006.00107.x
) / FEMS Microbiol Lett by JR Thomas (2006) -
Gimenez MI, Dilks K, Pohlschroder M (2007) Haloferax volcanii twin-arginine translocation substates include secreted soluble, C-terminally anchored and lipoproteins. Mol Microbiol 66:1597–1606
(
10.1111/j.1365-2958.2007.06034.x
) / Mol Microbiol by MI Gimenez (2007) -
Mould RM, Robinson C (1991) A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane. J Biol Chem 266:12189–12193
(
10.1016/S0021-9258(18)98879-4
) / J Biol Chem by RM Mould (1991) -
Braun NA, Davis AW, Theg SM (2007) The chloroplast Tat pathway utilizes the transmembrane electric potential as an energy source. Biophys J 93:1993–1998
(
10.1529/biophysj.106.098731
) / Biophys J by NA Braun (2007) -
Kwan DC, Thomas JR, Bolhuis A (2008) Bioenergetic requirements of a Tat-dependent substrate in the halophilic archaeon Haloarcula hispanica. FEBS J 275:6159–6167
(
10.1111/j.1742-4658.2008.06740.x
) / FEBS J by DC Kwan (2008) -
Bageshwar UK, Musser SM (2007) Two electrical potential-dependent steps are required for transport by the Escherichia coli Tat machinery. J Cell Biol 179:87–99
(
10.1083/jcb.200702082
) / J Cell Biol by UK Bageshwar (2007)
Dates
Type | When |
---|---|
Created | 15 years, 10 months ago (Oct. 9, 2009, 9:38 a.m.) |
Deposited | 3 years, 10 months ago (Oct. 11, 2021, 10:32 p.m.) |
Indexed | 1 year, 1 month ago (July 2, 2024, 8:32 a.m.) |
Issued | 15 years, 10 months ago (Oct. 10, 2009) |
Published | 15 years, 10 months ago (Oct. 10, 2009) |
Published Online | 15 years, 10 months ago (Oct. 10, 2009) |
Published Print | 15 years, 7 months ago (Jan. 1, 2010) |
@article{Yuan_2009, title={Protein transport across and into cell membranes in bacteria and archaea}, volume={67}, ISSN={1420-9071}, url={http://dx.doi.org/10.1007/s00018-009-0160-x}, DOI={10.1007/s00018-009-0160-x}, number={2}, journal={Cellular and Molecular Life Sciences}, publisher={Springer Science and Business Media LLC}, author={Yuan, Jijun and Zweers, Jessica C. and van Dijl, Jan Maarten and Dalbey, Ross E.}, year={2009}, month=oct, pages={179–199} }