Crossref book-chapter
Springer Berlin Heidelberg
Mathematical Programming Studies (297)
Bibliography

Grigoriadis, M. D. (1986). An efficient implementation of the network simplex method. Netflow at Pisa, 83–111.

Authors 1
  1. M. D. Grigoriadis (first)
References 49 Referenced 62
  1. H.A. Aashtiani and T.L. Magnanti, “Implementing primal-dual network flow algorithms”, ORC Report 055-76, M.I.T. (Cambridge, MA, 1976). / Implementing primal-dual network flow algorithms / ORC Report 055-76 by H.A. Aashtiani (1976)
  2. R. Barr, F. Glover and D. Klingman, “An improved version of the out-of-kilter method and a comparative study of computer codes”, Mathematical Programming 7 (1974) 60–86. (10.1007/BF01585504) / Mathematical Programming by R. Barr (1974)
  3. D.P. Bertsekas, “A unified framework for minimum cost network flow problems”, Technical Report LIDS-P-1245-A, M.I.T. (Cambridge, MA, 1982). / A unified framework for minimum cost network flow problems / Technical Report LIDS-P-1245-A by D.P. Bertsekas (1982)
  4. D.P. Bertsekas and P. Tseng, “Relaxation methods for minimum cost network flow problems”, Technical Report LIDS-P-1339, M.I.T. (Cambridge, MA, 1983). / Relaxation methods for minimum cost network flow problems / Technical Report LIDS-P-1339 by D.P. Bertsekas (1983)
  5. R.G. Bland, “New finite pivoting rules for the simplex method”, Mathematics of Operations Research 2 (1977) 103–107. (10.1287/moor.2.2.103) / Mathematics of Operations Research by R.G. Bland (1977)
  6. R.G. Bland and D.L. Jensen, private communication (1982). Also see D.L. Jensen, “Combinatorial augmentation methods: coloring and duality”, Ph.D. Thesis, School of OR and IE, Cornell University (Ithaca, NY, 1985).
  7. G.H. Bradley, G.G. Brown and G.W. Graves, “Design and implementation of large scale primal transshipment algorithms”, Management Science 24 (1977) 1–34. (10.1287/mnsc.24.1.1) / Management Science by G.H. Bradley (1977)
  8. R.G. Busacker and P.J. Gowen, “A procedure for determining a family of minimal cost network flow patterns”, ORO Technical Report 15, Operations Research Office, Johns Hopkins University (Baltimore, MD, 1961). / A procedure for determining a family of minimal cost network flow patterns / ORO Technical Report by R.G. Busacker (1961)
  9. A. Charnes, D. Karney, D. Klingman and J. Stutz, “Past, present and future of large scale transshipment computer codes and applications”, Computers and Operations Research 2 (1975) 71–81. (10.1016/0305-0548(75)90010-6) / Computers and Operations Research by A. Charnes (1975)
  10. W.H. Cunningham, “A network simplex method”, Mathematical Programming 1 (1976) 105–116. (10.1007/BF01580379) / Mathematical Programming by W.H. Cunningham (1976)
  11. W.H. Cunningham, “Theoretical properties of the network simplex methods”, Mathematics of Operations Research 4 (1979) 196–208. (10.1287/moor.4.2.196) / Mathematics of Operations Research by W.H. Cunningham (1979)
  12. G.B. Dantzig, “Application of the simplex method to a transportation problem”, in: T.C. Koopmans, ed., Activity analysis of production and allocation (Wiley, New York, 1951) pp. 359–373. / Activity analysis of production and allocation by G.B. Dantzig (1951)
  13. G.B. Dantzig, “Upper bounds, secondary constraints and block triangularity in linear programming”, Econometrica 23 (1955) 174–183. (10.2307/1907876) / Econometrica by G.B. Dantzig (1955)
  14. V. Malhotra, M. Kumar and S. Maheshwari, “An O(|V|3) algorithm for finding maximum flows in
  15. DECSYSTEM-10/DECSYSTEM-20 processor reference manual, Publication AD-H391A-T1 (Digital Equipment Corporation, Marlboro, MA, June 1982) pp. 3.56–58. Also see “METER%” in TOPS-20 monitor calls reference manual, Publication AA-4166E-T1 (Digital Equipment corporation, Marlboro, MA, December 1982) pp. 3.20.
  16. E.A. Dinic, “Algorithm for solution of a problem of maximum flow in network with power estimation”, Soviet Mathematics Doklady 11 (1970) 1277–1280. / Soviet Mathematics Doklady by E.A. Dinic (1970)
  17. J. Edmonds and R.M. Karp, “Theoretical improvements in algorithmic efficiency for network flow problems”, Journal of the ACM 19 (1972) 248–264. (10.1145/321694.321699) / Journal of the ACM by J. Edmonds (1972)
  18. J. Edmonds and D.L. Jensen, private communication (1982).
  19. D.R. Fulkerson and G.B. Dantzig, “Computations of maximal flows in networks”, Naval Research Logistics Quarterly 2 (1955) 277–283. (10.1002/nav.3800020407) / Naval Research Logistics Quarterly by D.R. Fulkerson (1955)
  20. D.R. Fulkerson, “An out-of-kilter method for minimal-cost flow problems”, SIAM Journal on Applied Mathematics 9 (1961) 18–27. (10.1137/0109002) / SIAM Journal on Applied Mathematics by D.R. Fulkerson (1961)
  21. B.J. Gassner, “Cycling in the transportation problem”, Naval Research Logisics Quarterly 11 (1964) 43–58. (10.1002/nav.3800110104) / Naval Research Logisics Quarterly by B.J. Gassner (1964)
  22. S.I. Gass, Linear programming—Methods and applications (McGraw-Hill, New York, 1975). / Linear programming—Methods and applications by S.I. Gass (1975)
  23. F. Glover, D. Karney and D. Klingman, “Implementation and computational comparisons of primal, dual, and primal-dual computer codes for minimum cost network flow problems”, Networks 4 (1974) 191–212. (10.1002/net.3230040302) / Networks by F. Glover (1974)
  24. F. Glover, D. Karney, D. Klingman and A. Napier, “A comparison of computational times for various starting procedures, basis change criteria and solution algorithms for transportation problems”, Management Science 20 (1974) 793–819. (10.1287/mnsc.20.5.783) / Management Science by F. Glover (1974)
  25. D. Goldfarb and J.K. Reid, “A practicable steepest edge simplex algorithm”, Mathematical Programming 12 (1977) 361–371. (10.1007/BF01593804) / Mathematical Programming by D. Goldfarb (1977)
  26. D. Goldfarb, “Steepest edge simplex algorithms for network flow problems”, Technical Report RC 6649, IBM T.J. Watson Research Center (Yorktown Heights, NY, 1977). / Steepest edge simplex algorithms for network flow problems / Technical Report RC by D. Goldfarb (1977)
  27. D. Goldfarb and M.D. Grigoriadis, “An efficient steepest-edge algorithm for maximum flow problems”, Tenth International Symposium on Mathematical Programming, Montreal, Canada (1979).
  28. M.D. Grigoriadis, “Minimum cost multistage multicommodity network flows”, NATO Conference on Applications of Optimization Methods for Large-scale Resource Allocation Problems, Elsinore, Denmark (July 1971).
  29. M.D. Grigoriadis, “Algorithms for the minimum cost single and multicommodity network flow problems”, Lecture notes, Summer course in Combinatorial Optimization, SOGESTA, Urbino, Italy (1978). / Algorithms for the minimum cost single and multicommodity network flow problems / Lecture notes, Summer course in Combinatorial Optimization by M.D. Grigoriadis (1978)
  30. M.D. Grigoriadis and T. Hsu, “The Rutgers minimum cost network flow subroutines”, SIGMAP Bulletin of the ACM 26 (1979) 17–18. / SIGMAP Bulletin of the ACM by M.D. Grigoriadis (1979)
  31. E. Horowitz and S.J. Sahni, Fundamentals of computer algorithms (Computer Science Press, Rockville, MD, 1978). / Fundamentals of computer algorithms by E. Horowitz (1978)
  32. P.A. Jensen and J.W. Barnes, Network flow programming (Wiley, New York, 1980). / Network flow programming by P.A. Jensen (1980)
  33. E.L. Johnson, “Networks and basic solutions”, Operations Research 14 (1966) 619–623. (10.1287/opre.14.4.619) / Operations Research by E.L. Johnson (1966)
  34. C.L. Hedrick, “Fortran-X: An extended memory version of the DECSYSTEM-20 Fortran Version 7”, unpublished LCSR Report, Rutgers University (New Brunswick, NJ, November 1983). / Fortran-X: An extended memory version of the DECSYSTEM-20 Fortran Version 7 by C.L. Hedrick (1983)
  35. D. Karney and D. Klingman, “Implementation and computational study on an in-core out-of-core primal network code”, Operations Research 24 (1976) 1056–1077. (10.1287/opre.24.6.1056) / Operations Research by D. Karney (1976)
  36. J.L. Kennington and R.V. Helgason, Algorithms for network programming (Wiley, New York, 1980). / Algorithms for network programming by J.L. Kennington (1980)
  37. M. Klein, “A primal method for minimal cost flows”, Management Science 14 (1967) 205–220. (10.1287/mnsc.14.3.205) / Management Science by M. Klein (1967)
  38. D. Klingman, A. Napier and J. Stutz, “NETGEN—A program for generating large-scale (un)capacitated assignment, transportation and minimum cost flow network problems”, Management Science 20 (1974) 814–821. (10.1287/mnsc.20.5.814) / Management Science by D. Klingman (1974)
  39. D.E. Knuth, The art of computer programming—Volume 1 (Addison-Wesley, Reading, MA, 1973). / The art of computer programming by D.E. Knuth (1973)
  40. E.L. Lawler, Combinatorial optimization: Networks and matroids (Holt, Rinehart and Winston, New York, 1976). / Combinatorial optimization: Networks and matroids by E.L. Lawler (1976)
  41. V. Malhotra, M. Kumar and S. Maheshwari, “An O(|V|3) algorithm for finding maximum flows in networks”, Information Processing Letters 7 (1978) 277–278. (10.1016/0020-0190(78)90016-9) / Information Processing Letters by V. Malhotra (1978)
  42. J. Mulvey, “Testing a large-scale network optimization program”, Mathematical Programming 15 (1978) 291–314. (10.1007/BF01609034) / Mathematical Programming by J. Mulvey (1978)
  43. J. Mulvey, “Pivot strategies for primal-simplex network codes”, Journal of the ACM 25 (1978) 266–270. (10.1145/322063.322070) / Journal of the ACM by J. Mulvey (1978)
  44. A. Orden, “The transshipment problem”, Management Science 2 (1956) 276–285. (10.1287/mnsc.2.3.276) / Management Science by A. Orden (1956)
  45. J.B. Orlin, “Polynomial time pivoting procedures for minimum cost network flow problems”, TIMS/ORSA National Meeting, San Francisco, CA, 17 May 1984. Also see “On the simplex algorithm for networks”, Sloan W.P. 1467–1483 (rev. May 1984), M.I.T., Cambridge, MA.
  46. H. Rock, “Scaling techniques for minimal cost network flows”, in: U. Page, ed., Discrete structures and algorithms (Carl Hanser, Munchen, 1980) pp. 181–191. / Discrete structures and algorithms by H. Rock (1980)
  47. V. Srinivasan and G.L. Thompson, “Accelerated algorithms for labeling and relabeling trees, with applications to distribution problems”, Journal of the ACM 19 (1972) 712–726. (10.1145/321724.321734) / Journal of the ACM by V. Srinivasan (1972)
  48. E. Tardos, “A strongly polynomial minimum cost circulation algorithm”, Combinatorica (to appear May 1985). (10.1007/BF02579369)
  49. N. Zadeh, “A bad network problem for the simplex method and other minimum cost flow algorithms”, Mathematical Programming 5 (1973) 255–266. (10.1007/BF01580132) / Mathematical Programming by N. Zadeh (1973)
Dates
Type When
Created 13 years, 6 months ago (Feb. 14, 2012, 6:04 p.m.)
Deposited 4 years, 8 months ago (Dec. 9, 2020, 5:01 p.m.)
Indexed 3 months, 1 week ago (May 18, 2025, 2:06 a.m.)
Issued 39 years, 7 months ago (Jan. 1, 1986)
Published 39 years, 7 months ago (Jan. 1, 1986)
Published Online 16 years, 5 months ago (Feb. 26, 2009)
Published Print 39 years, 7 months ago (Jan. 1, 1986)
Funders 0

None

@inbook{Grigoriadis_1986, title={An efficient implementation of the network simplex method}, ISBN={9783642009235}, ISSN={0303-3929}, url={http://dx.doi.org/10.1007/bfb0121089}, DOI={10.1007/bfb0121089}, booktitle={Netflow at Pisa}, publisher={Springer Berlin Heidelberg}, author={Grigoriadis, M. D.}, year={1986}, pages={83–111} }