Crossref journal-article
Springer Science and Business Media LLC
Mathematical Programming (297)
Bibliography

Bland, R. G., & Jensen, D. L. (1992). On the computational behavior of a polynomial-time network flow algorithm. Mathematical Programming, 54(1–3), 1–39.

Authors 2
  1. Robert G. Bland (first)
  2. David L. Jensen (additional)
References 41 Referenced 21
  1. R.K. Ahuja, A.V. Goldberg, J.B. Orlin and R.E. Tarjan, “Finding minimum cost flows by double scaling,”Mathematical Programming 53 (1992) 243–266. (10.1007/BF01585705) / Mathematical Programming by R.K. Ahuja (1992)
  2. R.K. Ahuja, T.L. Magnanti and J.B. Orlin, “Network flows,” in: G.L. Nemhauser, A.H.G. Rinnooy Kan, M.J. Todd, eds.,Optimization, Handbooks in Operations Research and Management Science, vol. 1 (North-Holland, Amsterdam 1989). / Optimization, Handbooks in Operations Research and Management Science, vol. 1 by R.K. Ahuja (1989)
  3. R.K. Ahuja, J.B. Orlin and R.E. Tarjan, “Improved time bounds for the maximum flow problem,”SIAM Journal of Computing 18 (1989) 939–954. (10.1137/0218065) / SIAM Journal of Computing by R.K. Ahuja (1989)
  4. D.P. Bertsekas, “A distributed algorithm for the assignment problem,” unpublished manuscript (1979).
  5. D.P. Bertsekas “A unified framework for primal-dual methods in minimum cost network flow problems,”Mathematical Programming 32 (1985) 125–145. (10.1007/BF01586087) / Mathematical Programming by D.P. Bertsekas (1985)
  6. D.P. Bertsekas “Distributed asynchronous relaxation methods for linear network flow problems,” Technical Report LIDS-P-1986, Laboratory for Decision Systems, MIT (Cambridge, MA, 1986). / “Distributed asynchronous relaxation methods for linear network flow problems,” Technical Report LIDS-P-1986 by D.P. Bertsekas (1986)
  7. D.P. Bertsekas and J. Eckstein, “Dual coordinate step methods for linear network flow problems,”Mathematical Programming 42 (1988) 203–243. (10.1007/BF01589405) / Mathematical Programming by D.P. Bertsekas (1988)
  8. R.G. Bland, “Complementary orthogonal subspaces of ℝ n and orientability of matroids,” dissertation, Cornell University (Ithaca, NY, 1974). / Complementary orthogonal subspaces of ℝ n and orientability of matroids by R.G. Bland (1974)
  9. R.G. Bland and J. Edmonds, “Fast primal algorithms for totally unimodular linear programming,” presented at the XI International Symposium on Mathematical Programming (Bonn, Germany, 1982).
  10. R.G. Bland and D.L. Jensen, “A report on the computational behavior of a polynomial-time network flow algorithm,” Cornell University School of OR/IE Technical Report No. 661 (Ithaca, NY, 1985).
  11. G.H. Bradley, G.G. Brown and G.W. Graves, “Design and implementation of large scale primal transshipment algorithms,”Management Science 24 (1977) 1–28. (10.1287/mnsc.24.1.1) / Management Science by G.H. Bradley (1977)
  12. N.R. Draper and H. Smith,Applied Regression Analysis (Wiley, New York, 1981, 2nd ed.). / Applied Regression Analysis by N.R. Draper (1981)
  13. J. Edmonds and R.M. Karp, “Theoretical improvements in algorithmic efficiency for network flow problems,”Journal of the ACM 19 (1972) 248–264. (10.1145/321694.321699) / Journal of the ACM by J. Edmonds (1972)
  14. L.R. Ford, Jr. and D.R. Fulkerson,Flows in Networks (Princeton University Press, Princeton, NJ 1962). / Flows in Networks by L.R. Ford Jr. (1962)
  15. M.L. Fredman and R.E. Tarjan, “Fibonacci heaps and their uses in improved network optimization algorithms,”Journal of the ACM 34 (1987) 596–615. (10.1145/28869.28874) / Journal of the ACM by M.L. Fredman (1987)
  16. D.R. Fulkerson, “An out-of-kilter algorithm for minimal cost flow problems,”Journal of the SIAM 9 (1961) 18–27. / Journal of the SIAM by D.R. Fulkerson (1961)
  17. D.R. Fulkerson, “Networks, frames, blocking systems,” in: G.B. Dantzig and A.F. Veinott, Jr., eds.,Mathematics of the Decision Sciences, Lectures in Applied Math., vol. 11, (American Mathematical Society, Providence, RI 1968) pp. 303–334. / Mathematics of the Decision Sciences, Lectures in Applied Math., vol. 11 by D.R. Fulkerson (1968)
  18. H.N. Gabow, “Scaling algorithms for network problems,”Journal of Computer and Systems Science 31 (1985) 148–168. (10.1016/0022-0000(85)90039-X) / Journal of Computer and Systems Science by H.N. Gabow (1985)
  19. H.N. Gabow, “On the theoretic and practical efficiency of scaling algorithms for network problems,” presented at the Fall 1984 ORSA/TIMS meeting (Dallas, TX, 1984).
  20. A.V. Goldberg, “A new max-flow algorithm,” Technical Report MIT/LCS/TM-291, Laboratory for Computer Science, MIT (Cambridge, MA, 1985). / “A new max-flow algorithm,” Technical Report MIT/LCS/TM-291 by A.V. Goldberg (1985)
  21. A.V. Goldberg, “Efficient graph algorithms for sequential and parallel computers”, Dissertation, MIT (Cambridge, MA., 1987). / Efficient graph algorithms for sequential and parallel computers by A.V. Goldberg (1987)
  22. A.V. Goldberg, E. Tardos and R.E. Tarjan, “Network flow algorithms,” in: B. Korte, L. Lovász, H.J. Prömel and A. Schrÿver, eds.,Flows, Paths, and VLSI Layout (Springer, Berlin, 1990) pp 101–164. / Flows, Paths, and VLSI Layout by A.V. Goldberg (1990)
  23. A.V. Goldberg and R.E. Tarjan, “A new approach to the maximum flow problem,”Proceedings of the 18th ACM Symposium on Theory of Computing (1986) 136–146. (10.1145/12130.12144)
  24. A.V. Goldberg and R.E. Tarjan, “A new approach to the maximum flow problem,”Journal of the ACM 35 (1988) 921–940. (10.1145/48014.61051) / Journal of the ACM by A.V. Goldberg (1988)
  25. A.V. Goldberg and R.E. Tarjan, “Finding minimum cost circulations by successive approximations,”Mathematics of OR 15 (1990) 430–466. (10.1287/moor.15.3.430) / Mathematics of OR by A.V. Goldberg (1990)
  26. M.D. Grigoriadis, “An efficient implementation of the network simplex method,”Mathematical Programming Study 26 (1986) 83–111. (10.1007/BFb0121089) / Mathematical Programming Study by M.D. Grigoriadis (1986)
  27. M.D. Grigoriadis, private communication.
  28. M.D. Grigoriadis and T. Hsu, “RNET — The Rutgers minimum-cost network flow subroutines — user documentation,” Computer Science Technical Report, Rutgers University (New Brunswick, NY, 1979). / RNET — The Rutgers minimum-cost network flow subroutines — user documentation,” Computer Science Technical Report by M.D. Grigoriadis (1979)
  29. D.L. Jensen, “Coloring and duality: combinatorial augmentation methods,” Dissertation, Cornell University (Ithaca, NY, 1985). / Coloring and duality: combinatorial augmentation methods by D.L. Jensen (1985)
  30. D. Klingman, A. Napier and J. Stutz, “NETGEN: a program for generating large-scale assignment, transportation and minimum cost network flow problems,”Management Science 20 (1974) 814–821. (10.1287/mnsc.20.5.814) / Management Science by D. Klingman (1974)
  31. L.G. Khachiyan, “A polynomial algorithm in linear programming,”Doklady Akademiia Nauk SSSR 224 (1979) 1093–1096 (in Russian). [English translation in:Soviet Mathematics Doklady 20 (1979) 191–194.] / Doklady Akademiia Nauk SSSR by L.G. Khachiyan (1979)
  32. V.M. Malhotra, M. Pramodh Kumar and S.N. Maheshwari, “An O(|V 3|) algorithm for finding maximum flows in networks,”Information Processing Letters 7 (1978) 277–278. (10.1016/0020-0190(78)90016-9) / Information Processing Letters by V.M. Malhotra (1978)
  33. G.J. Minty, “Monotone networks,”Proceedings of the Royal Society, London, Series A 257 (1960) 194–212. / Proceedings of the Royal Society, London, Series A by G.J. Minty (1960)
  34. J.B. Orlin, “A faster polynomial minimum cost flow algorithm,”Proceedings of the 20th ACM Symposium on Theory of Computing (1988) 377–387. (10.21236/ADA457044)
  35. H. Röck, “Scaling techniques for minimal cost network flows,” in: V. Page, ed.,Discrete structures and algorithms (Carl Hansen, Munich, 1980). / Discrete structures and algorithms by H. Röck (1980)
  36. P.D. Seymour, “Decomposition of regular matroids,”Journal of Combinatorial Theory, Series B 28 (1980) 305–359. (10.1016/0095-8956(80)90075-1) / Journal of Combinatorial Theory, Series B by P.D. Seymour (1980)
  37. D.D. Sleator, “An O(nm logn) algorithm for maximum network flow,” Dissertation, Technical Report STAN-CS-80-831, Stanford University (Stanford, CA, 1980). / An O(nm logn) algorithm for maximum network flow by D.D. Sleator (1980)
  38. D.D. Sleator and R.E. Tarjan, “A data structure for dynamic trees,”Journal of Computer and System Sciences 26 (1983) 362–391. (10.1016/0022-0000(83)90006-5) / Journal of Computer and System Sciences by D.D. Sleator (1983)
  39. É. Tardos, “A strongly polynomial minimum cost circulation algorithm,”Combinatorica 5 (1985) 247–255. (10.1007/BF02579369) / Combinatorica by É. Tardos (1985)
  40. É. Tardos, “A strongly polynomial algorithm for solving combinatorial linear programs,”Operations Research 34 (1986) 250–256. (10.1287/opre.34.2.250) / Operations Research by É. Tardos (1986)
  41. R.E. Tarjan,Data Structures and Network Algorithms (SIAM, Philadelphia, PA, 1983). (10.1137/1.9781611970265) / Data Structures and Network Algorithms by R.E. Tarjan (1983)
Dates
Type When
Created 20 years, 4 months ago (April 28, 2005, 12:35 a.m.)
Deposited 6 years, 3 months ago (May 3, 2019, 7:32 a.m.)
Indexed 1 year, 10 months ago (Oct. 30, 2023, 8:59 p.m.)
Issued 33 years, 7 months ago (Feb. 1, 1992)
Published 33 years, 7 months ago (Feb. 1, 1992)
Published Print 33 years, 7 months ago (Feb. 1, 1992)
Funders 0

None

@article{Bland_1992, title={On the computational behavior of a polynomial-time network flow algorithm}, volume={54}, ISSN={1436-4646}, url={http://dx.doi.org/10.1007/bf01586039}, DOI={10.1007/bf01586039}, number={1–3}, journal={Mathematical Programming}, publisher={Springer Science and Business Media LLC}, author={Bland, Robert G. and Jensen, David L.}, year={1992}, month=feb, pages={1–39} }