Crossref journal-article
Springer Science and Business Media LLC
Inventiones Mathematicae (297)
Bibliography

Olshanetsky, M. A., & Perelomov, A. M. (1976). Completely integrable Hamiltonian systems connected with semisimple Lie algebras. Inventiones Mathematicae, 37(2), 93–108.

Authors 2
  1. M. A. Olshanetsky (first)
  2. A. M. Perelomov (additional)
References 12 Referenced 183
  1. Arnold, V.I.: Mathematical methods of classical mechanisms. Moscow, 1974 (in Russian)
  2. Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math.16, 197 (1975). (10.1016/0001-8708(75)90151-6) / Adv. Math. by J. Moser (1975)
  3. Calogero, F.: Solution of the one-dimensionaln-body problems with quadratic and/or inversly quadratic pair potentials. J. Math. Phys.12, 419?436 (1971) (10.1063/1.1665604) / J. Math. Phys. by F. Calogero (1971)
  4. Sutherland, B.: Exact results for a quantum many-body problem in one dimension. II. Phys. Rev.A5, 1372?1376 (1972) (10.1103/PhysRevA.5.1372) / Phys. Rev. A by B. Sutherland (1972)
  5. Lax, P. D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math.21, 467?490 (1968) (10.1002/cpa.3160210503) / Comm. Pure Appl. Math. by P. D. Lax (1968)
  6. Calogero, F., Marchioro C., Ragnisco, O.: Exact solution of the classical and quantal one-dimensional many-body problems with the two-body potentialV ?(x)=g 2 a 2/sinh2 a x. Lett. Nuovo Cim.13, 383?387 (1975) (10.1007/BF02742674) / Lett. Nuovo Cim. by F. Calogero (1975)
  7. Calogero, F.: Exactly solvable one-dimensional many-body problems. Lett. Nuovo Cim.13, 411?416 (1975) (10.1007/BF02790495) / Lett. Nuovo Cim. by F. Calogero (1975)
  8. Bourbaki, N.: Groupes et algebras de Lie, Chapitres 4 5 et 6. Paris: Hermann 1969 / Groupes et algebras de Lie, Chapitres 4 5 et 6 by N. Bourbaki (1969)
  9. Olshanetsky, M. A., Perelomov, A. M.: Completely integrable classical systems connected with semisimple Lie algebras. I. Lett. Math. Phys. (1976) (10.1007/BF00417602)
  10. Perelomov, A. M.: Completely integrable classical systems connected with semisimple Lie algebras. II. Preprint ITEP No. 27 (1976)
  11. Adler, M.: A New Integrable System and a Conjecture by Calogero. Preprint (1975)
  12. Bateman, H., Erdélyi, A.: Higher transcendental functions, v. 3, N. Y. 1955
Dates
Type When
Created 20 years, 4 months ago (April 12, 2005, 3:56 p.m.)
Deposited 5 years, 4 months ago (April 6, 2020, 4:02 p.m.)
Indexed 1 month, 3 weeks ago (July 12, 2025, 6:57 p.m.)
Issued 49 years, 3 months ago (June 1, 1976)
Published 49 years, 3 months ago (June 1, 1976)
Published Print 49 years, 3 months ago (June 1, 1976)
Funders 0

None

@article{Olshanetsky_1976, title={Completely integrable Hamiltonian systems connected with semisimple Lie algebras}, volume={37}, ISSN={1432-1297}, url={http://dx.doi.org/10.1007/bf01418964}, DOI={10.1007/bf01418964}, number={2}, journal={Inventiones Mathematicae}, publisher={Springer Science and Business Media LLC}, author={Olshanetsky, M. A. and Perelomov, A. M.}, year={1976}, month=jun, pages={93–108} }