Crossref journal-article
Springer Science and Business Media LLC
pure and applied geophysics (297)
Bibliography

Odling, N. E. (1992). Network properties of a two-dimensional natural fracture pattern. Pure and Applied Geophysics, 138(1), 95–114.

Authors 1
  1. Noelle E. Odling (first)
References 19 Referenced 86
  1. Balberg, I. (1986),Connectivity and conductivity in 2D and 3D fracture systems. InFragmentation, Form and Flow in Fractured Media (eds. Engelman, R., and Jaeger, Z) Annals Israel Physical Soc8, 89–101.
  2. Balberg, I., andBinenbaum, N. (1983),Computer Study of the Percolation Threshold in a Two-dimensional Anisotropic System of Conducting Sticks, Physical ReviewB28, 3799–3812. (10.1103/PhysRevB.28.3799) / Physical Review B by I. Balberg (1983)
  3. Barton, C. C., andLarsen, E. (1985),Fractal Geometry of Two-dimensional Fracture Networks at Yucca Mountain, Southwestern Nevada, Proc. Int. Symp. Fundamentals of Rock Joints, Björkliden, Sweden, 77–84.
  4. Cheeney, R. F.,Statistical Methods in Geology (George Allen and Unwin, London 1983). / Statistical Methods in Geology by R. F. Cheeney (1983)
  5. Chilés, J. P. (1988),Fractal and Geostatistical Methods for Modelling of a Fracture Network, Mathematical Geology20, 631–654. (10.1007/BF00890581) / Mathematical Geology by J. P. Chilés (1988)
  6. Dverstorp, B., andAndersson, J. (1989),Application of the Discrete Fracture Network Concept with Field Data: Possibilities of Model Calibration and Validation, Water Resources Research25, 540–550. (10.1029/WR025i003p00540) / Water Resources Research by B. Dverstorp (1989)
  7. George, A.,Computer Solution of Large Sparse Positive Definite Systems (Prentice Hall, Inc., USA 1981). / Computer Solution of Large Sparse Positive Definite Systems by A. George (1981)
  8. Hestir, K., andLong, J. C. S. (1990),Analytical Expressions for the Permeability of Random Two-dimensional Poisson Fracture Networks Based on Regular Lattice Percolation and Equivalent Porous Media Theories, J. Geophys. Res.95 (B13), 21,565–21,581. (10.1029/JB095iB13p21565) / J. Geophys. Res. by K. Hestir (1990)
  9. Hirata, T. (1989),Fractal Dimension of Fault Systems in Japan: Fracture Structure in Rock Fracture Geometry at Various Scales, Pure Appl. Geophys.131, 157–170. (10.1007/BF00874485) / Pure Appl. Geophys. by T. Hirata (1989)
  10. Mandelbrot, B. B.,The Fractal Geometry of Nature (W. H. Freeman and Company, New York 1983). / The Fractal Geometry of Nature by B. B. Mandelbrot (1983)
  11. Okubo, P. G., andAki, K. (1987),Fractal Geometry in the San Andreas Fault System, J. Geophys. Res.92 (B1), 345–355. (10.1029/JB092iB01p00345) / J. Geophys. Res. by P. G. Okubo (1987)
  12. Pike, G. E., andSeager, C. H. (1974),Percolation and Conductivity: A Computer Study, Phys. Rev.B10, 1421–1434. (10.1103/PhysRevB.10.1421) / Phys. Rev. B by G. E. Pike (1974)
  13. Robinson, P. C. (1983),Connectivity of Fracture Systems—A Percolation Theory Approach, J. Phys. A: Math. Gen.16, 605–614. (10.1088/0305-4470/16/3/020) / J. Phys. A: Math. Gen. by P. C. Robinson (1983)
  14. Robinson, P. C. (1984),Connectivity, Flow and Transport in Network Models of Fractured Media, Ph.D. Thesis, Oxford University.
  15. Skjeltorp, A. T.,Fracture experiments on monolayers of microspheres. InRandom Fluctuations and Pattern Growth: Experiments and Models (eds. Stanley, H. E., and Ostrowsky, N.) (Kluwer Academic Publishers, Netherlands 1988) pp. 170–175. (10.1007/978-94-009-2653-0_29) / Random Fluctuations and Pattern Growth: Experiments and Models by A. T. Skjeltorp (1988)
  16. Snow, D. (1969),Anisotropic Permeability of Fractures Media, Water Resources Research5, 1273–1289. (10.1029/WR005i006p01273) / Water Resources Research by D. Snow (1969)
  17. Stauffer, D.,Introduction to Percolation Theory (Taylor and Francis, London 1985). (10.4324/9780203211595) / Introduction to Percolation Theory by D. Stauffer (1985)
  18. Steel, R. J. (1976),Devonian Basins of Western Norway—Sedimentary Response to Tectonism and to Varying Tectonic Context, Tectonophys.36, 207–224. (10.1016/0040-1951(76)90017-2) / Tectonophys. by R. J. Steel (1976)
  19. Stephens, M. A. (1970),Use of Kolmogorow-Smirnov, Cramer-Von Mises and Related Statistics without Extensive Tables, J. R. Statist. Soc.B32, 115–122. (10.1111/j.2517-6161.1970.tb00821.x) / J. R. Statist. Soc. B by M. A. Stephens (1970)
Dates
Type When
Created 20 years, 8 months ago (Dec. 24, 2004, 3:13 p.m.)
Deposited 1 year, 1 month ago (July 26, 2024, 12:59 a.m.)
Indexed 1 month, 2 weeks ago (July 11, 2025, 6:15 a.m.)
Issued 33 years, 5 months ago (March 1, 1992)
Published 33 years, 5 months ago (March 1, 1992)
Published Print 33 years, 5 months ago (March 1, 1992)
Funders 0

None

@article{Odling_1992, title={Network properties of a two-dimensional natural fracture pattern}, volume={138}, ISSN={1420-9136}, url={http://dx.doi.org/10.1007/bf00876716}, DOI={10.1007/bf00876716}, number={1}, journal={pure and applied geophysics}, publisher={Springer Science and Business Media LLC}, author={Odling, Noelle E.}, year={1992}, month=mar, pages={95–114} }