Crossref journal-article
Springer Science and Business Media LLC
International Journal of Computer Vision (297)
Bibliography

Barron, J. L., Jepson, A. D., & Tsotsos, J. K. (1990). The feasibility of motion and structure from noisy time-varying image velocity information. International Journal of Computer Vision, 5(3), 239–269.

Authors 3
  1. John L. Barron (first)
  2. Allan D. Jepson (additional)
  3. John K. Tsotsos (additional)
References 59 Referenced 29
  1. Adiv, G. 1984. Determining 3-D motion and structure from optical flow generated by several moving objects. COINS Tech. Rept. 84-07, University of Massachusetts, April. (Also PAMI 7 (4): 384?401, 1985.) (10.1109/TPAMI.1985.4767678)
  2. Aloimonos, J., and Brown, C.M. 1984. Direct processing of curvilinear sensor motion from a sequence of perspective images. In Proc. 2nd Workshop on Comput. Vision: Representation and Control, Annapolis, pp. 72?77.
  3. Aloimonos, J.Y., and Rigoutsos, I. 1986. Determining the 3-D motion of a rigid planar patch without correspondence, under perspective projection. In Proc. Workshop on Motion: Representation and Analysis, Kiawah Island, S.C, May 7?9.
  4. Aloimonos, Y., Weiss, I., and Bandyopadhyay, A. 1987. Active vision. In Proc 1st Intern. Conf. Comput. Vision, London, pp. 35?54.
  5. Anandan, P. 1989. A computational framework and an algorithm for the measurement of visual motion. Intern. J. Comput. Vision 2 (3): 283?310. (10.1007/BF00158167) / Intern. J. Comput. Vision by P. Anandan (1989)
  6. Bandyopadhyay, 1986. A computational study of rigid motion perception, Ph.D. Thesis, TR-211, Dept. of Computer Science, University of Rochester, NY, December.
  7. Bandyopadhyay, A., and Aloimonos, J. 1985. Perception of rigid motion from spatio-temporal derivatives of optical flow, TR-157, Dept. of Computer Science, University of Rochester, NY, March. / Perception of rigid motion from spatio-temporal derivatives of optical flow, TR-157 by A. Bandyopadhyay (1985)
  8. Barron, J.L. 1984. A survey of approaches for determining optic flow, environmental layout and egomotion. RBCV-TR-84-5, Dept. of Computer Science, University of Toronto, November.
  9. Barron, J.L. 1988. Computing motion and structure from noisy time-varying image velocity information. Ph.D. thesis, Dept. of Computer Science, University of Toronto, June. (Also TBCV-TR-88-24, Dept. of Computer Science, University of Toronto, August.)
  10. Barron, J.L., Jepson, A.D., and Tsotsos, J.K. 1987a. The sensitivity of motion and structure computations. In Proc 6th Amer. Assoc. Artif. Intell. Conf., Seattle, July, pp. 700?705.
  11. Barron, J.L., Jepson, A.D., and Tsotsos, J.K. 1987b. Determining egomotion and environmental layout from noisy time-varying image velocity in binocular image sequences. In Proc. 10th Intern. Joint Conf. Artif. Intell., Milan, pp. 822?825.
  12. Barron, J.L., Jepson, A.D., and Tsotsos, J.K. 1987c. Determination of egomotion and environmental layout from noisy time-varying image velocity in monocular image sequences. In Proc. ICIAP, Sicily, Italy, September, pp. 425?432.
  13. Barron, J.L., Jepson, A.D., and Tsotsos, J.K. 1988. The feasibility of motion and structure computations. In Proc. 2nd Intern. Conf. Comput. Vision, Tampa, FL, December, pp. 651?657.
  14. Barron, J.L., Jepson, A.D. and Tsotsos, J.K. 1989. Computing binocular motion and structure from monocular motion and structure. In Proc. ICIAP, Positano, Italy, September, pp. 399?406.
  15. Broida, T.J., and Chellappa, R. 1986. Kinematics of a rigid object from a sequence of noisy images: A batch approach. In Proc. Conf. Comput. Vision Pat. Recog., Miami Beach, FL, pp. 176?182.
  16. Bruss, A.R., and Horn, B.K.P. 1983. Passive Navigation. Comput. Vision, Graphics, Image Process. 21: 3?20. (10.1016/S0734-189X(83)80026-7) / Comput. Vision, Graphics, Image Process. by A.R. Bruss (1983)
  17. Buxton, B.F., Buxton, H., Murray, D.W., and Williams, N.S. 1984. 3-D solutions to the aperture problem. In T. O'Shea (ed.), Advances in Artificial Intelligence. Elsevier Science Publishers B.V.: North Holland, pp. 631?640.
  18. Dennis, J.E., and Schnabel, R.B. 1983. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall: Englewood Cliffs, NJ. / Numerical Methods for Unconstrained Optimization and Nonlinear Equations by J.E. Dennis (1983)
  19. Dreschler, L.S., and Hagel, H.-H. 1982. Volumetric model and 3-D trajectory of a moving car derived from monocular TV-frame sequences of a street scene. Comput. Graphics Image Process. 20: 199?228. (10.1016/0146-664X(82)90081-8) / Comput. Graphics Image Process. by L.S. Dreschler (1982)
  20. Dutta, R., Manmatha, R., Williams, L.R., and Riseman, E.M. 1989. A data set for quantitative motion analysis. In Proc. Conf. Comput. Vision Patt. Recog., San Diego, June, pp. 159?164. (10.1109/CVPR.1989.37844)
  21. Eagleson, R. 1989. Measurement of motion-induced image deformations: Spatio-temporal filters for translation, divergence, curl and shear. In Proc. of Vision Interface '89, London, Ontario, June, pp. 61?69.
  22. Fang, J.-Q., and Huang, T.S. 1984. Solving three-dimensional small-rotation motion equations: Uniqueness, algorithms and numerical results. Comput. Vision, Graphics, Image Process. 26: 183?206. (10.1016/0734-189X(84)90182-8) / Comput. Vision, Graphics, Image Process. by J.-Q. Fang (1984)
  23. Fang, J.-Q., and Huang, T.S. 1984. Some experiments on estimating the 3-D motion parameters of a rigid body from two consecutive image frames. IEEE Trans. Patt. Anal. Mach. Intell. (PAMI) 6 (5): 545?554. (10.1109/TPAMI.1984.4767569) / IEEE Trans. Patt. Anal. Mach. Intell. by J.-Q. Fang (1984)
  24. Fleet, D.J., and Jepson, A.D. 1990. Computation of component image velocity from local phase information. Intern J. Comput. Vision 5 (1): 77?104. (See also RBCV-TR-89?27, Dept. of Computer Science, University of Toronto, March, 1989.) (10.1007/BF00056772) / Intern J. Comput. Vision by D.J. Fleet (1990)
  25. Gibson, J.J. 1957. Optical motions and transformations as stimuli for visual perception. Psychological Review 64 (5): 288?295. (10.1037/h0044277) / Psychological Review by J.J. Gibson (1957)
  26. Hay, J.C. 1966. Optical motions and space perception: An extension of Gibson's analysis. Psychological Review 73 (6): 550?565. (10.1037/h0023863) / Psychological Review by J.C. Hay (1966)
  27. Heeger, D.J. 1988. Optical flow using spatiotemporal filters. Intern. J. Comput. Vision 1 (4): 279?302. (10.1007/BF00133568) / Intern. J. Comput. Vision by D.J. Heeger (1988)
  28. Horn, B.K.P. 1986. Robot Vision, MIT Press: Cambridge, MA. / Robot Vision by B.K.P. Horn (1986)
  29. Horn, B.K.P., and Schunck, B.G. 1981. Determining optical flow. Artificial Intelligence 17: 185?203. (10.1016/0004-3702(81)90024-2) / Artificial Intelligence by B.K.P. Horn (1981)
  30. Horn, B.K.P., and Weldon, E.J. 1988. Direct methods for recovering motion. Intern. J. Comput. Vision 2 (1): 51?76. (10.1007/BF00836281) / Intern. J. Comput. Vision by B.K.P. Horn (1988)
  31. Kanatani, K. 1985. Structure from motion without correspondence: General principle. In Proc 9th Intern. Joint Conf. Artif. Intell., Los Angeles, pp. 886?888.
  32. Lawton, D.T. 1983. Processing translational motion sequences. Comput. Graphics Image Process. 22: 116?144. (10.1016/0734-189X(83)90098-1) / Comput. Graphics Image Process. by D.T. Lawton (1983)
  33. Longuet-Higgins, H.C. 1981. A computer algorithm for reconstructing a scene from two projections. Nature 293, September, pp. 133?135. (10.1038/293133a0) / Nature by H.C. Longuet-Higgins (1981)
  34. Longuet-Higgins, H.C., and Prazdny, K. 1980. The interpretation of a moving image. In Proc. Roy. Soc. (London) B208: 385?397. (10.1098/rspb.1980.0057)
  35. Marr, D., and Ullman, S. 1981. Directional selectivity and its use in early visual processing. Proc. Roy. Soc. (London) B211: 151?180. (10.1098/rspb.1981.0001) / Proc. Roy. Soc. (London) by D. Marr (1981)
  36. Matthies, L., Szeliski, R., and Kanade, T. 1989. Kaiman filter-based algorithms for estimating depth from image sequences. Intern. J. Comput. Vision 3 (3): 209?238. (10.1007/BF00133032) / Intern. J. Comput. Vision by L. Matthies (1989)
  37. Negahdaripour, S., and Horn, B.K.P. 1987. Direct passive navigation. IEEE Trans. PAMI 9 (1): 168?176. (10.1109/TPAMI.1987.4767884) / IEEE Trans. PAMI by S. Negahdaripour (1987)
  38. Prazdny, K. 1979. Motion and structure from optical flow. In Proc. 6th Intern. Joint Conf. Artif. Intell., Tokyo, pp. 702?704.
  39. Regan, D. and Beverley, K.I. 1982. How do we avoid confounding the direction we are looking and the direction we are moving. Science 215: 194?196. (10.1126/science.7053572) / Science by D. Regan (1982)
  40. Roach, J.W., and Aggarwal, J.K. 1980. Determining the movement of objects from a sequence of images. IEEE Trans. PAMI 2 (6): 554?562. (10.1109/TPAMI.1980.6447703) / IEEE Trans. PAMI by J.W. Roach (1980)
  41. Shariat, H., and Price, K.E. 1986a. How to use more than two frames to estimate motion. In Proc. IEEE Workshop on Motion: Representation and Analysis, Charleston, SC, May, pp. 119?124.
  42. Shariat, H., and Price, K.E., 1986b. Results of motion estimation with more than 2 frames. In Proc. DARPA Image Understanding Workshop, Miami, FL, pp. 694?703.
  43. Spetsakis, M.E., and Aloimonos, J. 1988. Optimal computing of structure from motion using point correspondences in two frames. CAR-TR-389 (CS-TR-2101), Computer Vision Lab, Center for Automation Research, University of Maryland.
  44. Subbarao, M. 1986. Interpretation of visual motion: A computational study. Ph.D. thesis, CAR-TR-221, Center for Automation Research, University of Maryland, Setpember.
  45. Subbarao, M., and Waxman, A.M. 1985. On the uniqueness of image flow solutions for planar surfaces in motion. CAR-TR-114 (CS-TR-1485), Center for Automation Research, University of Maryland. (Also, 3rd Workshop on Computer Vision: Representation and Control, 1985, pp. 129?140.)
  46. Synder, M.A. 1986. The accuracy of 3-D parameters in correspondence-based techniques. Dept. of Computer and Information Science, University of Massachusetts, June.
  47. Thompson, W.B., and Kearney, J.K. 1986. Inexact vision. In Proc. Workshop on Motion: Representation and Analysis, May 7?9, Charleston, SC, pp. 15?21.
  48. Tsai, R.Y., and Huang, T.S. 1984. Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. Trans. IEEE PAMI 6 (1): 13?27. (10.1109/TPAMI.1984.4767471) / Trans. IEEE PAMI by R.Y. Tsai (1984)
  49. Tsai, R.Y., Huang, T.S., and Zhu, W.-L. 1982. Estimating three-dimensional motion parameters of a rigid planar patch II: Singular value decomposition. IEEE Trans. Acoustics, Speech and Signal Process. 30 (4): 525?534. (10.1109/TASSP.1982.1163931) / IEEE Trans. Acoustics, Speech and Signal Process. by R.Y. Tsai (1982)
  50. Ullman, S. 1979. The Interpretation of Visual Motion. MIT Press: Cambridge, MA. (10.7551/mitpress/3877.001.0001) / The Interpretation of Visual Motion by S. Ullman (1979)
  51. Verri, A., and Poggio, T. 1987. Against quantitative optical flow. In Proc. 1st Intern. Conf. Comput. Vision, London, pp. 171?180.
  52. Waxman, A.M., and Ullman, S. 1983. Surface structure and 3-D motion from image flow: A kinematic analysis, CAR-TR-24, Center for Automation Research, University of Maryland, October.
  53. Waxman, A.M., and Ullman, S., 1985. Surface structure and three-dimensional motion from image flow kinematics. Intern. J. Robotics Res. 4 (3): 72?94. (10.1177/027836498500400306) / Intern. J. Robotics Res. by A.M. Waxman (1985)
  54. Waxman, A.M., and Wohn, K. 1984. Contour evolution, neighbourhood deformation and global image flow: Planar surfaces in motion. CAR-TR-58, Center for Automation Research, University of Maryland, April.
  55. Waxman, A.M., and Wohn, K. 1985. Contour evolution, neighbourhood deformation and global image flow: Planar surfaces in motion. Intern. J. Robotics Res. 4 (3): 95?108. (10.1177/027836498500400307) / Intern. J. Robotics Res. by A.M. Waxman (1985)
  56. Waxman, A.M., Kamgar-Parsi, B., and Subbarao, M. 1987. Closed-form solutions to image flow equations. In Proc. 1st Intern. Conf. Comput. Vision, London, pp. 12?24.
  57. Waxman, A.M., Wu, J., and Bergholm, F. 1988. Convected activation profiles and the measurement of visual motion. In Proc. Conf. Comput. Vision Patt. Recog., Ann Arbor. (10.1109/CVPR.1988.196313)
  58. Webb, J.A., and Aggarwal, J.K. 1981. Visually interpreting the motion of objects in space, IEEE Computer 14: 40?46. (10.1109/C-M.1981.220561) / IEEE Computer by J.A. Webb (1981)
  59. Wu, J.J., Rink, R.E., Caelli, T.M., and Gourishankar, V.G. 1989. Recovery of the 3-D location and motion of a rigid object through camera image (An Extended Kalman Filter Approach). Intern. J. Comput. Vision 2 (4): 373?394. (10.1007/BF00133556) / Intern. J. Comput. Vision by J.J. Wu (1989)
Dates
Type When
Created 20 years, 9 months ago (Nov. 2, 2004, 12:31 p.m.)
Deposited 5 years, 4 months ago (April 3, 2020, 2:11 p.m.)
Indexed 2 months, 2 weeks ago (June 12, 2025, 6:43 a.m.)
Issued 34 years, 9 months ago (Dec. 1, 1990)
Published 34 years, 9 months ago (Dec. 1, 1990)
Published Print 34 years, 9 months ago (Dec. 1, 1990)
Funders 0

None

@article{Barron_1990, title={The feasibility of motion and structure from noisy time-varying image velocity information}, volume={5}, ISSN={1573-1405}, url={http://dx.doi.org/10.1007/bf00126501}, DOI={10.1007/bf00126501}, number={3}, journal={International Journal of Computer Vision}, publisher={Springer Science and Business Media LLC}, author={Barron, John L. and Jepson, Allan D. and Tsotsos, John K.}, year={1990}, month=dec, pages={239–269} }