Crossref book-chapter
Springer Netherlands
NATO Science for Peace and Security Series B: Physics and Biophysics (297)
Bibliography

Eglitis, R. I. (2012). Ab Initio Calculations of SrTiO3 (111) Surfaces. Nanodevices and Nanomaterials for Ecological Security, 125–132.

Authors 1
  1. R. I. Eglitis (first)
References 40 Referenced 2
  1. Noguera C (1996) Physics and chemistry at oxide surfaces. Cambridge University Press, New York (10.1017/CBO9780511524301) / Physics and chemistry at oxide surfaces by C Noguera (1996)
  2. Auciello O, Scott JF, Ramesh R (1998) The physics of ferroelectric memories. Phys Today July:22–24 (10.1063/1.882324)
  3. Padilla J, Vanderbilt D (1998) Ab initio study of SrTiO3 surfaces. Surf Sci 418:64–70 (10.1016/S0039-6028(98)00670-0) / Surf Sci by J Padilla (1998)
  4. Cheng C, Kunc K, Lee MH (2000) Structural relaxation and longitudinal dipole moment of SrTiO3 (001) (1 × 1) surfaces. Phys Rev B 62:10409–10418 (10.1103/PhysRevB.62.10409) / Phys Rev B by C Cheng (2000)
  5. Heifets E, Eglitis RI, Kotomin EA, Maier J, Borstel G (2001) Ab initio modeling of surface structure of SrTiO3 perovskite crystals. Phys Rev B 64:235417 (10.1103/PhysRevB.64.235417) / Phys Rev B by E Heifets (2001)
  6. Erdman N, Poeppelmeier K, Asta M, Warschkov O, Ellis DE, Marks L (2002) The structure and chemistry of the TiO2-rich surface of SrTiO3. Nature 419:55–57 (10.1038/nature01010) / Nature by N Erdman (2002)
  7. Eglitis RI, Vanderbilt D (2008) First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces. Phys Rev B 77:195408 (10.1103/PhysRevB.77.195408) / Phys Rev B by RI Eglitis (2008)
  8. Kimura S, Yamauchi J, Tsukada M, Watanabe S (1995) First-principles study on electronic structure of the (001) surface of SrTiO3. Phys Rev B 51:11049–11054 (10.1103/PhysRevB.51.11049) / Phys Rev B by S Kimura (1995)
  9. Li ZQ, Zhu JL, Wu CQ, Tang Z, Kawazoe Y (1998) Relaxation of TiO2- and SrO-terminated SrTiO3 (001) surfaces. Phys Rev B 58:8075–8078 (10.1103/PhysRevB.58.8075) / Phys Rev B by ZQ Li (1998)
  10. Herger R, Willmott PR, Bunk O, Schlepütz CM, Patterson BD, Delley B (2007) Surface of strontium titanate. Phys Rev Lett 98:076102 (10.1103/PhysRevLett.98.076102) / Phys Rev Lett by R Herger (2007)
  11. Heifets E, Eglitis RI, Kotomin EA, Maier J, Borstel G (2002) First-principles calculations for SrTiO3 (100) surface structure. Surf Sci 513:211–220 (10.1016/S0039-6028(02)01730-2) / Surf Sci by E Heifets (2002)
  12. Johnston K, Castell MR, Paxton AT, Finnis MW (2004) SrTiO3 (001) (2x1) reconstructions: first-principles calculations of surface energy and atomic structure compared with scanning tunnelling microscopy. Phys Rev B 70:085415 (10.1103/PhysRevB.70.085415) / Phys Rev B by K Johnston (2004)
  13. Piskunov S, Kotomin EA, Heifets E, Maier J, Eglitis RI, Borstel G (2005) Hybrid DFT calculations of the atomic and electronic structure for ABO3 perovskite (001) surfaces. Surf Sci 575:75–88 (10.1016/j.susc.2004.11.008) / Surf Sci by S Piskunov (2005)
  14. Li YL, Choudhury S, Haeni JH, Biegalsky MD, Vasudevarao A, Sharan A, Ma HZ, Levy J, Gopalan V, Trolier-McKinstry S, Schlom DG, Jia QX, Chen LQ (2006) Phase transitions and domain structures in strained pseudocubic (100) SrTiO3 thin films. Phys Rev B 73:184112 (10.1103/PhysRevB.73.184112) / Phys Rev B by YL Li (2006)
  15. Bickel N, Schmidt G, Heinz K, Müller K (1989) Ferroelectric relaxation of the SrTiO3 (100) surface. Phys Rev Lett 62:2009–2011 (10.1103/PhysRevLett.62.2009) / Phys Rev Lett by N Bickel (1989)
  16. Hikita T, Hanada T, Kudo M, Kawai M (1993) Structure and electronic state of the TiO2 and SrO terminated SrTiO3 (100) surfaces. Surf Sci 287–288:377–381 (10.1016/0039-6028(93)90806-U) / Surf Sci by T Hikita (1993)
  17. Kudo M, Hikita T, Hanada T, Sekine R, Kawai M (1994) Surface reactions at the controlled structure of SrTiO3 (001). Surf Interface Anal 22:412–416 (10.1002/sia.740220189) / Surf Interface Anal by M Kudo (1994)
  18. Kido Y, Nishimura T, Hoshido Y, Mamba H (2000) Surface structures of SrTiO3 (001) and Ni/SrTiO3 (001) studied by medium-energy ion scattering and SR-photoelectron spectroscopy. Nucl Instrum Methods Phys Res B 161–163:371–376 (10.1016/S0168-583X(99)00715-6) / Nucl Instrum Methods Phys Res B by Y Kido (2000)
  19. Ikeda A, Nishimura T, Morishita T, Kido Y (1999) Surface relaxation and rumpling of TiO2-terminated SrTiO3 (001) determined by medium ion scattering. Surf Sci 433–435:520–524 (10.1016/S0039-6028(99)00050-3) / Surf Sci by A Ikeda (1999)
  20. Charlton G, Brennan S, Muryn CA, McGrath R, Norman D, Turner TS, Charlton G (2000) Surface relaxation of SrTiO3. Surf Sci 457:L376–L380 (10.1016/S0039-6028(00)00403-9) / Surf Sci by G Charlton (2000)
  21. van der Heide PAW, Jiang QD, Kim YS, Rabalais JW (2001) X-ray photoelectron spectroscopic and ion scattering study of the SrTiO3 (001) surface. Surf Sci 473:59–70 (10.1016/S0039-6028(00)00954-7) / Surf Sci by PAW van der Heide (2001)
  22. Maus-Friedrichs W, Frerichs M, Gunhold A, Krischok S, Kempter V, Bihlmayer G (2002) The characterization of SrTiO3 (001) with MIES, UPS(Hel) and first-principles calculations. Surf Sci 515:499–506 (10.1016/S0039-6028(02)01968-4) / Surf Sci by W Maus-Friedrichs (2002)
  23. Bottin F, Finocchi F, Noguera C (2003) Stability and electronic structure of the (1x1) SrTiO3 (110) polar surfaces by first-principles calculations. Phys Rev B 68:035418 (10.1103/PhysRevB.68.035418) / Phys Rev B by F Bottin (2003)
  24. Heifets E, Goddard WA III, Kotomin EA, Eglitis RI, Borstel G (2004) Ab initio calculations of the SrTiO3 (110) polar surface. Phys Rev B 69:035408 (10.1103/PhysRevB.69.035408) / Phys Rev B by E Heifets (2004)
  25. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652 (10.1063/1.464913) / J Chem Phys by AD Becke (1993)
  26. Perdew JP, Yue W (1986) Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys Rev B 33:8800–8802; (1989) Erratum: accurate and simple density functional for the electronic exchange energy: generalized gradient approximation 40:3399(E)-3399(E); Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249 (10.1103/PhysRevB.33.8800) / Phys Rev B by JP Perdew (1986)
  27. Enterkin JA, Subramanian AK, Russell BC, Castell MR, Poeppelmeier KR, Marks LD (2010) A homologous series of structures on the surface of SrTiO3 (110). Nat Mater 9:245–247 (10.1038/nmat2636) / Nat Mater by JA Enterkin (2010)
  28. Tanaka H, Kawai T (1996) Surface structure of reduced SrTiO3 (111) observed by scanning tunnelling microscopy. Surf Sci 365:437–442 (10.1016/0039-6028(96)00739-X) / Surf Sci by H Tanaka (1996)
  29. Chang J, Park YS, Kim SK (2008) Atomically flat single-terminated SrTiO3 (111) surface. Appl Phys Lett 92:152910 (10.1063/1.2913005) / Appl Phys Lett by J Chang (2008)
  30. Pojani A, Finocchi F, Noguera C (1999) Polarity on the SrTiO3 (111) and (110) surfaces. Surf Sci 442:179–198 (10.1016/S0039-6028(99)00911-5) / Surf Sci by A Pojani (1999)
  31. Saunders VR, Dovesi R, Roetti C, Causa M, Harrison NM, Orlando R, Zicovich-Wilson CM (2006) CRYSTAL-2006 User Manual. University of Torino, Torino / CRYSTAL-2006 User Manual by VR Saunders (2006)
  32. Piskunov S, Heifets E, Eglitis RI, Borstel G (2004) Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study. Comput Mater Sci 29:165–178 (10.1016/j.commatsci.2003.08.036) / Comput Mater Sci by S Piskunov (2004)
  33. Eglitis RI, Vanderbilt D (2008) Ab initio calculations of the atomic and electronic structure of CaTiO3 (001) and (011) surfaces. Phys Rev B 78:155420 (10.1103/PhysRevB.78.155420) / Phys Rev B by RI Eglitis (2008)
  34. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789 (10.1103/PhysRevB.37.785) / Phys Rev B by C Lee (1988)
  35. Hay PJ, Wadt WR (1984) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–291 / Potentials for main group elements Na to Bi. J Chem Phys by PJ Hay (1984)
  36. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–307 / Potentials for K to Au including the outermost core orbitals. J Chem Phys by PJ Hay (1985)
  37. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192 (10.1103/PhysRevB.13.5188) / Phys Rev B by HJ Monkhorst (1976)
  38. Hellwege KH, Hellwege AM (eds) (1969) Ferroelectrics and related substances, Landolt-Börnstein, New Series, Group III, vol 3. Springer, Berlin / Ferroelectrics and related substances, Landolt-Börnstein, New Series, Group III, vol 3 (1969)
  39. Catlow CRA, Stoneham AM (1983) Ionicity in solids. J Phys C: Solid-State Phys 16:4321–4338 (10.1088/0022-3719/16/22/010) / J Phys C: Solid-State Phys by CRA Catlow (1983)
  40. Bochicchio RC, Reale HF (1993) On the nature of crystalline bonding: extension of statistical population analysis to two- and three- dimensional crystalline systems. J Phys B: At Mol Opt Phys 26:4871–4883 (10.1088/0953-4075/26/24/018) / J Phys B: At Mol Opt Phys by RC Bochicchio (1993)
Dates
Type When
Created 13 years, 3 months ago (May 4, 2012, 3:13 a.m.)
Deposited 2 years, 7 months ago (Jan. 19, 2023, 12:33 a.m.)
Indexed 5 months, 1 week ago (March 27, 2025, 4:04 a.m.)
Issued 13 years, 8 months ago (Jan. 1, 2012)
Published 13 years, 8 months ago (Jan. 1, 2012)
Published Online 13 years, 5 months ago (March 23, 2012)
Published Print 13 years, 8 months ago (Jan. 1, 2012)
Funders 0

None

@inbook{Eglitis_2012, title={Ab Initio Calculations of SrTiO3 (111) Surfaces}, ISBN={9789400741195}, ISSN={1874-6535}, url={http://dx.doi.org/10.1007/978-94-007-4119-5_11}, DOI={10.1007/978-94-007-4119-5_11}, booktitle={Nanodevices and Nanomaterials for Ecological Security}, publisher={Springer Netherlands}, author={Eglitis, R. I.}, year={2012}, pages={125–132} }