Crossref book-chapter
Springer International Publishing
Lecture Notes in Computer Science (297)
Bibliography

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks. Computer Vision – ECCV 2016, 525–542.

Authors 4
  1. Mohammad Rastegari (first)
  2. Vicente Ordonez (additional)
  3. Joseph Redmon (additional)
  4. Ali Farhadi (additional)
References 44 Referenced 2,001
  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)
  2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  3. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015) (10.1109/CVPR.2015.7298594)
  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR (2015) (10.1109/CVPR.2016.90)
  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014) (10.1109/CVPR.2014.81)
  6. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015) (10.1109/ICCV.2015.169)
  7. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
  8. Oculus, V.: Oculus rift-virtual reality headset for 3d gaming (2012). http://www.oculusvr.com
  9. Gottmer, M.: Merging reality and virtuality with microsoft hololens (2015)
  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015) (10.1109/CVPR.2015.7298965)
  11. Courbariaux, M., Bengio, Y.: Binarynet: training deep neural networks with weights and activations constrained to $$+$$1 or $$-$$1. CoRR (2016)
  12. Denil, M., Shakibi, B., Dinh, L., de Freitas, N., et al.: Predicting parameters in deep learning. In: Advances in Neural Information Processing Systems, pp. 2148–2156 (2013)
  13. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Sig. Syst. 2(4), 303–314 (1989) (10.1007/BF02551274) / Math. Control Sig. Syst. by G Cybenko (1989)
  14. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep neural networks. In: Interspeech, pp. 437–440 (2011) (10.21437/Interspeech.2011-169)
  15. Dauphin, Y.N., Bengio, Y.: Big neural networks waste capacity. arXiv preprint arXiv:1301.3583 (2013)
  16. Ba, J., Caruana, R.: Do deep nets really need to be deep?. In: Advances in Neural Information Processing Systems, pp. 2654–2662 (2014)
  17. Hanson, S.J., Pratt, L.Y.: Comparing biases for minimal network construction with back-propagation. In: Advances in Neural Information Processing Systems, pp. 177–185 (1989)
  18. LeCun, Y., Denker, J.S., Solla, S.A., Howard, R.E., Jackel, L.D.: Optimal brain damage. In: NIPs, vol. 89 (1989)
  19. Hassibi, B., Stork, D.G.: Second Order Derivatives for Network Pruning: Optimal Brain Surgeon. Morgan Kaufmann, San Francisco (1993) / Second Order Derivatives for Network Pruning: Optimal Brain Surgeon by B Hassibi (1993)
  20. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)
  21. Van Nguyen, H., Zhou, K., Vemulapalli, R.: Cross-domain synthesis of medical images using efficient location-sensitive deep network. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 677–684. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24553-9_83 (10.1007/978-3-319-24553-9_83) / Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 / Lecture Notes in Computer Science by H Van Nguyen (2015)
  22. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015)
  23. Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing neural networks with the hashing trick. arXiv preprint arXiv:1504.04788 (2015)
  24. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in Neural Information Processing Systems, pp. 1269–1277 (2014)
  25. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866 (2014) (10.5244/C.28.88)
  26. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
  27. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. CoRR (2016) (10.1609/aaai.v31i1.11231)
  28. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: Squeezenet: alexnet-level accuracy with 50x fewer parameters and $$<$$1mb model size. arXiv preprint arXiv:1602.07360 (2016)
  29. Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115 (2014)
  30. Arora, S., Bhaskara, A., Ge, R., Ma, T.: Provable bounds for learning some deep representations. arXiv preprint arXiv:1310.6343 (2013)
  31. Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neural networks on cpus. In: Proceedings of Deep Learning and Unsupervised Feature Learning NIPS Workshop, vol. 1 (2011)
  32. Hwang, K., Sung, W.: Fixed-point feedforward deep neural network design using weights $$+$$1, 0, and $$-$$1. In: 2014 IEEE Workshop on Signal Processing Systems (SiPS), pp. 1–6. IEEE (2014) (10.1109/SiPS.2014.6986082)
  33. Anwar, S., Hwang, K., Sung, W.: Fixed point optimization of deep convolutional neural networks for object recognition. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1131–1135. IEEE (2015) (10.1109/ICASSP.2015.7178146)
  34. Lin, Z., Courbariaux, M., Memisevic, R., Bengio, Y.: Neural networks with few multiplications. arXiv preprint arXiv:1510.03009 (2015)
  35. Courbariaux, M., Bengio, Y., David, J.P.: Training deep neural networks with low precision multiplications. arXiv preprint arXiv:1412.7024 (2014)
  36. Soudry, D., Hubara, I., Meir, R.: Expectation backpropagation: parameter-free training of multilayer neural networks with continuous or discrete weights. In: Advances in Neural Information Processing Systems, pp. 963–971 (2014)
  37. Esser, S.K., Appuswamy, R., Merolla, P., Arthur, J.V., Modha, D.S.: Backpropagation for energy-efficient neuromorphic computing. In: Advances in Neural Information Processing Systems, pp. 1117–1125 (2015)
  38. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: training deep neural networks with binary weights during propagations. In: Advances in Neural Information Processing Systems, pp. 3105–3113 (2015)
  39. Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using dropconnect. In: Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 1058–1066 (2013)
  40. Baldassi, C., Ingrosso, A., Lucibello, C., Saglietti, L., Zecchina, R.: Subdominant dense clusters allow for simple learning and high computational performance in neural networks with discrete synapses. Phys. Rev. Lett. 115(12), 128101 (2015) (10.1103/PhysRevLett.115.128101) / Phys. Rev. Lett. by C Baldassi (2015)
  41. Kim, M., Smaragdis, P.: Bitwise neural networks. arXiv preprint arXiv:1601.06071 (2016)
  42. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  43. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
  44. Redmon, J.: Darknet: open source neural networks in c (2013–2016). http://pjreddie.com/darknet/
Dates
Type When
Created 8 years, 11 months ago (Sept. 16, 2016, 10:59 a.m.)
Deposited 3 years, 1 month ago (July 8, 2022, 1:14 p.m.)
Indexed 36 minutes ago (Aug. 29, 2025, 1:01 a.m.)
Issued 9 years, 7 months ago (Jan. 1, 2016)
Published 9 years, 7 months ago (Jan. 1, 2016)
Published Online 8 years, 11 months ago (Sept. 17, 2016)
Published Print 9 years, 7 months ago (Jan. 1, 2016)
Funders 0

None

@inbook{Rastegari_2016, title={XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks}, ISBN={9783319464930}, ISSN={1611-3349}, url={http://dx.doi.org/10.1007/978-3-319-46493-0_32}, DOI={10.1007/978-3-319-46493-0_32}, booktitle={Computer Vision – ECCV 2016}, publisher={Springer International Publishing}, author={Rastegari, Mohammad and Ordonez, Vicente and Redmon, Joseph and Farhadi, Ali}, year={2016}, pages={525–542} }