10.1007/978-3-319-29746-0_11
Crossref book-chapter
Springer International Publishing
Carbon Nanotubes for Interconnects (297)
Bibliography

Shulaker, M. M., Wei, H., Mitra, S., & Wong, H.-S. P. (2016). Carbon Nanotubes for Monolithic 3D ICs. Carbon Nanotubes for Interconnects, 315–333.

Authors 4
  1. Max Marcel Shulaker (first)
  2. Hai Wei (additional)
  3. Subhasish Mitra (additional)
  4. H.-S. Philip Wong (additional)
References 80 Referenced 3
  1. Javey A et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949): 654–657 (10.1038/nature01797) / Nature by A Javey (2003)
  2. Appenzeller J (2008) Carbon nanotubes for high-performance electronics—progress and prospect. Proc IEEE 96(2):201–211 (10.1109/JPROC.2007.911051) / Proc IEEE by J Appenzeller (2008)
  3. Naeemi A, Sarvari R, Meindl JD (2005) Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). Electron Device Lett IEEE 26(2): 84–86 (10.1109/LED.2004.841440) / Electron Device Lett IEEE by A Naeemi (2005)
  4. Kreupl F et al (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64(1):399–408 (10.1016/S0167-9317(02)00814-6) / Microelectron Eng by F Kreupl (2002)
  5. Wong H-SP et al (2011) Carbon nanotube electronics—materials, devices, circuits, design, modeling, and performance projection. In: Electron devices meeting (IEDM), 2011 IEEE international, IEEE, Washington DC, USA (10.1109/IEDM.2011.6131594)
  6. Deng J et al (2008) Carbon nanotube transistor compact model for circuit design and performance optimization. ACM J Emerg Technol Comput Syst 4(2):7 (10.1145/1350763.1350767) / ACM J Emerg Technol Comput Syst by J Deng (2008)
  7. Chang L (2012) Short course. In: Electron devices meeting (IEDM), 2011 IEEE international, IEEE, Washington DC, USA
  8. Wei L et al (2009) A non-iterative compact model for carbon nanotube FETs incorporating source exhaustion effects. In: Electron devices meeting (IEDM), 2009 IEEE international, IEEE, Baltimore, Maryland, USA (10.1109/IEDM.2009.5424281)
  9. Lee CS et al (2015) A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—part II: extrinsic elements, performance assessment, and design optimization. IEEE Trans Electron Devices 62(9):3070–3078 (10.1109/TED.2015.2457424) / IEEE Trans Electron Devices by CS Lee (2015)
  10. Stanley-Marbell P, Caparros Cabezas V, Luijten R (2011) Pinned to the walls: impact of packaging and application properties on the memory and power walls. In: Proceedings of the 17th IEEE/ACM international symposium on low-power electronics and design, IEEE, Fukuoka, Japan (10.1109/ISLPED.2011.5993603)
  11. Dally B (2011) Power, programmability, and granularity: the challenges of exascale computing. In: Test conference (ITC), 2011 IEEE international, IEEE, Anaheim, CA, USA (10.1109/TEST.2011.6139189)
  12. Shulaker MM et al (2015) Monolithic 3D integration: a path from concept to reality. In: Proceedings of the 2015 design, automation and test in Europe conference and exhibition, EDA Consortium, Grenoble, France (10.7873/DATE.2015.1111)
  13. Ebrahimi M et al (2014) Monolithic 3D integration advances and challenges: from technology to system levels. In: SOI-3D-subthreshold microelectronics technology unified conference (S3S), 2014 IEEE, IEEE, San Francisco, CA, USA (10.1109/S3S.2014.7028198)
  14. Dennard RH et al (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. Solid State Circuits IEEE J 9(5):256–268 (10.1109/JSSC.1974.1050511) / Solid State Circuits IEEE J by RH Dennard (1974)
  15. Haensch W et al (2006) Silicon CMOS devices beyond scaling. IBM J Res Dev 50(4.5): 339–361 (10.1147/rd.504.0339)
  16. Skotnicki T et al (2005) The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance. Circuits Devices Mag IEEE 21(1):16–26 (10.1109/MCD.2005.1388765) / Circuits Devices Mag IEEE by T Skotnicki (2005)
  17. Banerjee K et al (2001) 3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. Proc IEEE 89(5):602–633 (10.1109/5.929647) / Proc IEEE by K Banerjee (2001)
  18. Garrou P, Koyanagi M, Ramm P (2014) Handbook of 3D integration: volume 3-3D process technology. Wiley, http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527332650,subjectCd-PH62.html (10.1002/9783527670109)
  19. Lau JH (2011) TSV interposers: the most cost-effective integrator for 3D IC integration. Chip Scale Rev 15(5):23–27 / Chip Scale Rev by JH Lau (2011)
  20. Black B et al (2006) Die stacking (3D) microarchitecture. In: Microarchitecture, 2006 MICRO-39, 39th annual IEEE/ACM international symposium on, IEEE, Orlando, Florida, USA
  21. Sakuma K et al (2008) 3D chip-stacking technology with through-silicon vias and low-volume lead-free interconnections. IBM J Res Dev 52(6):611–622 (10.1147/JRD.2008.5388567) / IBM J Res Dev by K Sakuma (2008)
  22. Ko C-T, Chen K-N (2010) Wafer-level bonding/stacking technology for 3D integration. Microelectron Reliab 50(4):481–488 (10.1016/j.microrel.2009.09.015) / Microelectron Reliab by C-T Ko (2010)
  23. Topol AW et al (2006) Three-dimensional integrated circuits. IBM J Res Dev 50(4.5):491–506 (10.1147/rd.504.0491)
  24. Xu Z, Lu J-Q (2013) Through-silicon-via fabrication technologies, passives extraction, and electrical modeling for 3-D integration/packaging. Semicond Manuf IEEE Trans 26(1):23–34 (10.1109/TSM.2012.2236369) / Semicond Manuf IEEE Trans by Z Xu (2013)
  25. Batude P et al (2011) Advances, challenges and opportunities in 3D CMOS sequential integration. In: Electron devices meeting (IEDM), 2011 IEEE international, IEEE, Washington DC, USA (10.1109/IEDM.2011.6131506)
  26. Panth S et al (2013) High-density integration of functional modules using monolithic 3D-IC technology. In: Design automation conference (ASP-DAC), 2013 18th Asia and South Pacific, IEEE, Yokohama, Japan (10.1109/ASPDAC.2013.6509679)
  27. Wong S et al (2007) Monolithic 3D integrated circuits. In: VLSI technology, systems and applications, VLSI-TSA 2007, international symposium on, IEEE, Hsinchu, Taiwan (10.1109/VTSA.2007.378923)
  28. Yang F-L et al (2002) 35 nm CMOS FinFETs. In: VLSI technology, digest of technical papers, 2002 symposium on, IEEE, Honolulu, Hawaii
  29. Tsai JC (1966) Integrated complementary MOS circuits. In: Electron devices meeting, 1966 international, IEEE, Washington DC, USA (10.1109/IEDM.1966.187689)
  30. Hamaguchi T et al (1985) Novel LSI/SOI wafer fabrication using device layer transfer technique. In: Electron devices meeting, 1985 international, IEEE, Washington DC, USA (10.1109/IEDM.1985.191068)
  31. Shen C-H et al (2013) Monolithic 3D chip integrated with 500 ns NVM, 3 ps logic circuits and SRAM. In: Electron devices meeting (IEDM), 2013 IEEE international, IEEE, Washington DC, USA (10.1109/IEDM.2013.6724593)
  32. Yang C-C et al (2013) Record-high 121/62 μA/μm on-currents 3D stacked epi-like Si FETs with and without metal back gate. In: Electron devices meeting (IEDM), 2013 IEEE international, IEEE, Washington DC, USA (10.1109/IEDM.2013.6724719)
  33. Shulaker MM et al (2013) Carbon nanotube computer. Nature 501(7468):526–530 (10.1038/nature12502) / Nature by MM Shulaker (2013)
  34. Hubert A et al (2009) A stacked SONOS technology, up to 4 levels and 6 nm crystalline nanowires, with gate-all-around or independent gates (Φ-Flash), suitable for full 3D integration. In: Electron devices meeting (IEDM), 2009 IEEE international, IEEE, Washington DC, USA (10.1109/IEDM.2009.5424260)
  35. Divakauni R et al (2003) SOI stacked DRAM logic. Google Patents
  36. Huai Y (2008) Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bull 18(6):33–40 / AAPPS Bull by Y Huai (2008)
  37. Wong H-SP et al (2012) Metal–oxide RRAM. Proc IEEE 100(6):1951–1970 (10.1109/JPROC.2012.2190369) / Proc IEEE by H-SP Wong (2012)
  38. Kund M et al (2005) Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20 nm. In: IEEE international electron devices meeting, IEDM Technical Digest, Washington DC, USA
  39. Fuensanta M et al (2013) Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage. Thermochim Acta 565:95–101 (10.1016/j.tca.2013.04.028) / Thermochim Acta by M Fuensanta (2013)
  40. Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37(12):1273–1281 (10.1557/mrs.2012.203) / MRS Bull by E Pop (2012)
  41. Hai W et al (2013) Monolithic three-dimensional integration of carbon nanotube FET complementary logic circuits. In: Electron devices meeting (IEDM), 2013 IEEE international, IEEE, Washington DC, USA
  42. Smullen CW et al (2011) Relaxing non-volatility for fast and energy-efficient STT-RAM caches. In: High performance computer architecture (HPCA), 2011 IEEE 17th international symposium on, IEEE, San Antonio, Texas, USA (10.1109/HPCA.2011.5749716)
  43. Martel RA et al (1998) Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447 (10.1063/1.122477)
  44. Tans SJ, Verschueren AR, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393(6680):49–52 (10.1038/29954) / Nature by SJ Tans (1998)
  45. Zhang J et al (2012) Robust digital VLSI using carbon nanotubes. IEEE Trans Comput Aided Des Integr Circuits Syst 31(4):453–471 (10.1109/TCAD.2012.2187527) / IEEE Trans Comput Aided Des Integr Circuits Syst by J Zhang (2012)
  46. Patil N et al (2008) Design methods for misaligned and mispositioned carbon-nanotube immune circuits. Comput Aided Des Integr Circuits Syst IEEE Trans 27(10):1725–1736 (10.1109/TCAD.2008.2003278) / Comput Aided Des Integr Circuits Syst IEEE Trans by N Patil (2008)
  47. Patil N et al (2009) VMR: VLSI-compatible metallic carbon nanotube removal for imperfection-immune cascaded multi-stage digital logic circuits using carbon nanotube FETs. In: Electron devices meeting (IEDM), 2009 IEEE international, IEEE, Washington DC, USA (10.1109/IEDM.2009.5424295)
  48. Hills G et al (2013) Rapid exploration of processing and design guidelines to overcome carbon nanotube variations. In: Proceedings of the 50th annual design automation conference, ACM, Austin, Tx, USA (10.1145/2463209.2488864)
  49. Zhang J et al (2011) Characterization and design of logic circuits in the presence of carbon nanotube density variations. Comput Aided Des Integr Circuits Syst IEEE Trans 30(8): 1103–1113 (10.1109/TCAD.2011.2121010) / Comput Aided Des Integr Circuits Syst IEEE Trans by J Zhang (2011)
  50. Patil N et al (2008) Integrated wafer-scale growth and transfer of directional carbon nanotubes and misaligned-carbon-nanotube-immune logic structures. In: VLSI Technology, 2008 symposium on, IEEE, Honolulu, Hawaii (10.1109/VLSIT.2008.4588619)
  51. Xiao J et al (2009) Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett 9(12):4311–4319 (10.1021/nl9025488) / Nano Lett by J Xiao (2009)
  52. Shulaker MM et al (2011) Linear increases in carbon nanotube density through multiple transfer technique. Nano Lett 11(5):1881–1886 (10.1021/nl200063x) / Nano Lett by MM Shulaker (2011)
  53. Patil N et al (2011) Scalable carbon nanotube computational and storage circuits immune to metallic and mispositioned carbon nanotubes. Nanotechnol IEEE Trans 10(4):744–750 (10.1109/TNANO.2010.2076323) / Nanotechnol IEEE Trans by N Patil (2011)
  54. Ding L et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9(2):800–805 (10.1021/nl803496s) / Nano Lett by L Ding (2009)
  55. Liu J, Hersam MC (2010) Recent developments in carbon nanotube sorting and selective growth. MRS Bull 35:315–321 (10.1557/mrs2010.554) / MRS Bull by J Liu (2010)
  56. Arnold MS et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1(1):60–65 (10.1038/nnano.2006.52) / Nat Nanotechnol by MS Arnold (2006)
  57. Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517):706–709 (10.1126/science.1058782) / Science by PG Collins (2001)
  58. Shulaker MM et al (2014) Sensor-to-digital interface built entirely with carbon nanotube FETs. IEEE J Solid State Circuits 49(1):190–201 (10.1109/JSSC.2013.2282092)
  59. Jin SH et al (2013) Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nat Nanotechnol 8(5):347–355 (10.1038/nnano.2013.56) / Nat Nanotechnol by SH Jin (2013)
  60. Shulaker MM, Hills G, Wu TF, Bao Z, Wong HSP, Mitra S (2015) Efficient metallic carbon nanotube removal for highly-scaled technologies. IEEE International Electron Devices Meeting (IEDM) 32–4 (10.1109/IEDM.2015.7409815)
  61. Hills G et al Rapid co-optimization of processing and circuit design to overcome carbon nanotube variations
  62. Shulaker MM et al (2014) Carbon nanotube circuit integration up to sub-20 nm. ACS Nano 8(4):3434--3443 (10.1021/nn406301r)
  63. Shulaker M et al (2013) Experimental demonstration of a fully digital capacitive sensor interface built entirely using carbon-nanotube FETs. In: Solid-state circuits conference digest of technical papers (ISSCC), 2013 IEEE international, IEEE, San Francisco, CA, USA (10.1109/ISSCC.2013.6487660)
  64. Shulaker MM et al (2014) High-performance carbon nanotube field-effect transistors. In: Electron devices meeting (IEDM), 2014 IEEE international, IEEE, Washington DC, USA (10.1109/IEDM.2014.7047164)
  65. Franklin AD et al (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12(2):758–762 (10.1021/nl203701g) / Nano Lett by AD Franklin (2012)
  66. Chai Y et al (2012) Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. Electron Devices IEEE Trans 59(1):12–19 (10.1109/TED.2011.2170216) / Electron Devices IEEE Trans by Y Chai (2012)
  67. Suriyasena Liyanage L et al (2014) VLSI-compatible carbon nanotube doping technique with low work-function metal oxides. Nano Lett 14(4):1884–1890 (10.1021/nl404654j) / Nano Lett by L Suriyasena Liyanage (2014)
  68. Franklin AD, Chen Z (2010) Length scaling of carbon nanotube transistors. Nat Nanotechnol 5(12):858–862 (10.1038/nnano.2010.220) / Nat Nanotechnol by AD Franklin (2010)
  69. Cao Q et al (2015) End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350(6256):68–72 (10.1126/science.aac8006) / Science by Q Cao (2015)
  70. Park RS, Shulaker MM, Hills G, Suriyasena Liyanage L, Lee S, Tang A, Mitra S, Wong HSP (2016) Hysteresis in carbon nanotube transistors: measurement and analysis of trap density, energy level, and spatial distribution. ACS Nano 10(4):4599–4608. doi: 10.1021/acsnano.6b00792 , Publication Date (Web): March 22, 2016 (Article) (10.1021/acsnano.6b00792) / ACS Nano by RS Park (2016)
  71. Wei H, et al (2009) Monolithic three-dimensional integrated circuits using carbon nanotube FETs and interconnects. In: Electron devices meeting (IEDM), 2009 IEEE international, IEEE, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-43181-7, Washington DC, USA
  72. Oliver MR (2004) Chemical-mechanical planarization of semiconductor materials, vol. 69. Springer, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-43181-7 (10.1007/978-3-662-06234-0)
  73. Shulaker MM et al (2014) Monolithic 3D integration of logic and memory: carbon nanotube FETs, resistive RAM, and silicon FETs. In: Electron devices meeting (IEDM), 2014 IEEE International, IEEE, Washington DC, USA (10.1109/IEDM.2014.7047120)
  74. Shulaker MM et al (2014) Monolithic three-dimensional integration of carbon nanotube FETs with silicon CMOS. In: VLSI technology (VLSI-technology): Digest of technical papers, 2014 symposium on, IEEE, Honolulu, Hawaii (10.1109/VLSIT.2014.6894422)
  75. Bobba S et al (2011) CELONCEL: Effective design technique for 3-D monolithic integration targeting high performance integrated circuits. In: Proceedings of the 16th Asia and South Pacific design automation conference, IEEE, Yokohama, Japan (10.1109/ASPDAC.2011.5722210)
  76. Lee Y-J, Lim SK (2013) Ultrahigh density logic designs using monolithic 3-D integration. Comput Aided Des Integr Circuits Syst IEEE Trans 32(12):1892–1905 (10.1109/TCAD.2013.2273986) / Comput Aided Des Integr Circuits Syst IEEE Trans by Y-J Lee (2013)
  77. Collins PG et al (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804 (10.1126/science.287.5459.1801)
  78. Heinze S et al (2002) Carbon nanotubes as Schottky barrier transistors. Phys Rev Lett 89(10):106801 (10.1103/PhysRevLett.89.106801) / Phys Rev Lett by S Heinze (2002)
  79. Shahrjerdi D et al (2013) High-performance air-stable n-type carbon nanotube transistors with erbium contacts. ACS Nano 7(9):8303–8308 (10.1021/nn403935v) / ACS Nano by D Shahrjerdi (2013)
  80. Ding L et al (2009) Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. Nano Lett 9(12): 4209–4214 (10.1021/nl9024243) / Nano Lett by L Ding (2009)
Dates
Type When
Created 9 years, 1 month ago (July 9, 2016, 2:54 a.m.)
Deposited 5 years, 11 months ago (Sept. 10, 2019, 7:18 p.m.)
Indexed 29 minutes ago (Aug. 27, 2025, 12:33 p.m.)
Issued 9 years, 1 month ago (July 10, 2016)
Published 9 years, 1 month ago (July 10, 2016)
Published Online 9 years, 1 month ago (July 10, 2016)
Published Print 8 years, 7 months ago (Jan. 1, 2017)
Funders 0

None

@inbook{Shulaker_2016, title={Carbon Nanotubes for Monolithic 3D ICs}, ISBN={9783319297460}, url={http://dx.doi.org/10.1007/978-3-319-29746-0_11}, DOI={10.1007/978-3-319-29746-0_11}, booktitle={Carbon Nanotubes for Interconnects}, publisher={Springer International Publishing}, author={Shulaker, Max Marcel and Wei, Hai and Mitra, Subhasish and Wong, H.-S. Philip}, year={2016}, month=jul, pages={315–333} }