10.1007/978-3-319-27013-5_11
Crossref book-chapter
Springer International Publishing
High-Entropy Alloys (297)
Bibliography

Gao, M. C. (2016). Design of High-Entropy Alloys. High-Entropy Alloys, 369–398.

Authors 1
  1. Michael C. Gao (first)
References 68 Referenced 31
  1. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mat 6(5):299–303. doi: 10.1002/adem.200300567 (10.1002/adem.200300567) / Adv Eng Mat by JW Yeh (2004)
  2. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mat Sci Eng A 375–377:213–218. doi: 10.1016/j.msea.2003.10.257 (10.1016/j.msea.2003.10.257) / Mat Sci Eng A by B Cantor (2004)
  3. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mat Sci 61:1–93. doi: 10.1016/j.pmatsci.2013.10.001 (10.1016/j.pmatsci.2013.10.001) / Prog Mat Sci by Y Zhang (2014)
  4. Zhang Y, Lu ZP, Ma SG, Liaw PK, Tang Z, Cheng YQ, Gao MC (2014) Guidelines in predicting phase formation of high-entropy alloys. MRS Commun 4(2):57–62. doi: 10.1557/mrc.2014.11 (10.1557/mrc.2014.11) / MRS Commun by Y Zhang (2014)
  5. Ye YF, Liu CT, Yang Y (2015) A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater 94:152–161. doi: 10.1016/j.actamat.2015.04.051 (10.1016/j.actamat.2015.04.051) / Acta Mater by YF Ye (2015)
  6. Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2015) Design of high entropy alloys: a single-parameter thermodynamic rule. Scr Mater 104:53–55. doi: 10.1016/j.scriptamat.2015.03.023 (10.1016/j.scriptamat.2015.03.023) / Scr Mater by YF Ye (2015)
  7. Gao MC, Alman DE (2013) Searching for next single-phase high-entropy alloy compositions. Entropy 15:4504–4519. doi: 10.3390/e15104504 (10.3390/e15104504) / Entropy by MC Gao (2013)
  8. Gao MC, Zhang B, Guo SM, Qiao JW, Hawk JA (2016) High-entropy alloys in hexagonal close packed structure. Metall Mater Trans A (in press). doi: 10.1007/s11661-015-3091-1 (10.1007/s11661-015-3091-1) / Metallurgical and Materials Transactions A by M. C. Gao (2015)
  9. Lucas MS, Wilks GB, Mauger L, Munoz JA, Senkov ON, Michel E, Horwath J, Semiatin SL, Stone MB, Abernathy DL, Karapetrova E (2012) Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl Phys Lett 100(25):251907–251904. doi: http://dx.doi.org/10.1063/1.4730327 (10.1063/1.4730327) / Applied Physics Letters by M. S. Lucas (2012)
  10. Wu Z, Bei H, Otto F, Pharr GM, George EP (2014) Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46:131–140. doi: 10.1016/j.intermet.2013.10.024 (10.1016/j.intermet.2013.10.024) / Intermetallics by Z Wu (2014)
  11. Lucas MS, Mauger L, Munoz JA, Xiao Y, Sheets AO, Semiatin SL, Horwath J, Turgut Z (2011) Magnetic and vibrational properties of high-entropy alloys. J Appl Phys 109(7) 07E307. doi: 10.1063/1.3538936 (10.1063/1.3538936) / Journal of Applied Physics by M. S. Lucas (2011)
  12. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Refractory high-entropy alloys. Intermetallics 18(9):1758–1765. doi: 10.1016/j.intermet.2010.05.014 (10.1016/j.intermet.2010.05.014) / Intermetallics by ON Senkov (2010)
  13. Senkov ON, Wilks GB, Scott JM, Miracle DB (2011) Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19(5):698–706. doi: 10.1016/j.intermet.2011.01.004 (10.1016/j.intermet.2011.01.004) / Intermetallics by ON Senkov (2011)
  14. Yang X, Zhang Y, Liaw PK (2012) Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Iumrs International Conference in Asia 36:292–298. doi: 10.1016/j.proeng.2012.03.043 (10.1016/j.proeng.2012.03.043) / Procedia Engineering by X. Yang (2012)
  15. Senkov ON, Senkova SV, Miracle DB, Woodward C (2013) Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system. Mater Sci Eng A Struct Mater Prop Microstruct Proc 565:51–62. doi: 10.1016/j.msea.2012.12.018 (10.1016/j.msea.2012.12.018) / Mater Sci Eng A Struct Mater Prop Microstruct Proc by ON Senkov (2013)
  16. Wu YD, Cai YH, Wang T, Si JJ, Zhu J, Wang YD, Hui XD (2014) A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater Lett 130:277–280. doi: 10.1016/j.matlet.2014.05.134 (10.1016/j.matlet.2014.05.134) / Mater Lett by YD Wu (2014)
  17. Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF (2011) Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd 509(20):6043–6048. doi: 10.1016/j.jallcom.2011.02.171 (10.1016/j.jallcom.2011.02.171) / J Alloys Compd by ON Senkov (2011)
  18. Gorr B, Azim M, Christ HJ, Mueller T, Schliephake D, Heilmaier M (2015) Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J Alloys Compd 624:270–278. doi: 10.1016/j.jallcom.2014.11.012 (10.1016/j.jallcom.2014.11.012) / J Alloys Compd by B Gorr (2015)
  19. Zhang Y, Yang X, Liaw PK (2012) Alloy design and properties optimization of high-entropy alloys. JOM 64(7):830–838. doi: 10.1007/s11837-012-0366-5 (10.1007/s11837-012-0366-5) / JOM by Y Zhang (2012)
  20. Bei H (2013) Multi-component solid solution alloys having high mixing entropy. USA Patent US 2013/0108502 A1, 2 May 2013
  21. Zhang B, Gao MC, Zhang Y, Guo SM (2016) Senary refractory high-entropy alloy CrxMoNbTaVW. CALPHAD 51:193–201 (10.1016/j.calphad.2015.09.007) / Calphad by B. Zhang (2015)
  22. Gao MC, Zhang B, Yang S, Guo SM (2016) Senary refractory high-entropy alloy HfNbTaTiVZr. Metall Mater Trans A (in press). doi: 10.1007/s11661-015-3105-z (10.1007/s11661-015-3105-z) / Metallurgical and Materials Transactions A by M. C. Gao (2015)
  23. Zhang B, Gao MC, Zhang Y, Yang S, Guo SM (2015) Senary refractory high-entropy alloy MoNbTaTiVW. Mat Sci Tech 31:1207–1213. doi: 10.1179/1743284715Y.0000000031 (10.1179/1743284715Y.0000000031) / Mat Sci Tech by B Zhang (2015)
  24. Okamoto H (2000) Desk handbook: phase diagrams for binary alloys. ASM International, Materials Park, OH 44073 / Desk handbook: phase diagrams for binary alloys by H Okamoto (2000)
  25. Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W (2014) High-entropy alloys with hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66(10):1984–1992. doi: 10.1007/s11837-014-1085-x (10.1007/s11837-014-1085-x) / JOM by A Takeuchi (2014)
  26. Feuerbacher M, Heidelmann M, Thomas C (2014) Hexagonal high-entropy alloys. Mat Res Lett. doi: 10.1080/21663831.2014.951493 (10.1080/21663831.2014.951493) / Mat Res Lett by M Feuerbacher (2014)
  27. Youssefa KM, Zaddach AJ, Niu C, Irving DL, Koch CC (2015) A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett 3(2):95–99. doi: http://dx.doi.org/10.1080/21663831.2014.985855 (10.1080/21663831.2014.985855) / Materials Research Letters by Khaled M. Youssef (2014)
  28. Kozak R, Alla Sologubenko A, Steurer W (2014) Single-phase high-entropy alloys –an overview. Z Kristallogr 230(1):55–68. doi: 10.1515/zkri-2014-1739 (10.1515/zkri-2014-1739) / Z Kristallogr by R Kozak (2014)
  29. Stepanov ND, Shaysultanov DG, Salishchev GA, Tikhonovsky MA (2015) Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett 142:153–155. doi: 10.1016/j.matlet.2014.11.162 (10.1016/j.matlet.2014.11.162) / Mater Lett by ND Stepanov (2015)
  30. Troparevsky MC, Morris JR, Kent PRC, Lupini AR, Stocks GM (2015) Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X 5(1):011041. doi: 10.1103/PhysRevX.5.011041 (10.1103/PhysRevX.5.011041) / Phys Rev X by MC Troparevsky (2015)
  31. Paschoal JOA, Kleykamp H, Thummler F (1983) Phase-equilibria in the quaternary molybdenum-ruthenium-rhodium-palladium system. Z Metallkd 74(10):652–664 / Z Metallkd by JOA Paschoal (1983)
  32. Feuerbacher M, Heidelmann M, Thomas C (2014) Hexagonal high-entropy alloys. Mater Res Lett 3:1–6. doi: 10.1080/21663831.2014.951493 (10.1080/21663831.2014.951493) / Mater Res Lett by M Feuerbacher (2014)
  33. Yong L, Ma SG, Gao MC, Zhang C, Zhang T, Yang H, Wang Z, Qiao JW (2015) Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions. Metall Mater Trans A (in press). doi: 10.1007/s11661-016-3396-8 (10.1007/s11661-016-3396-8) / Metallurgical and Materials Transactions A by Yong Liu (2016)
  34. Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK (2008) Solid-solution phase formation rules for multi-component alloys. Adv Eng Mat 10(6):534–538. doi: 10.1002/adem.200700240 (10.1002/adem.200700240) / Adv Eng Mat by Y Zhang (2008)
  35. Guo S, Ng C, Lu J, Liu CT (2011) Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys 109(10):103505. doi: 10.1063/1.3587228 (10.1063/1.3587228) / J Appl Phys by S Guo (2011)
  36. Poletti MG, Battezzati L (2014) Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater 75:297–306. doi: 10.1016/j.actamat.2014.04.033 (10.1016/j.actamat.2014.04.033) / Acta Mater by MG Poletti (2014)
  37. Miedema AR, de Boer FR, Boom R (1977) Model predictions for the enthalpy of formation of transition metal alloys. CALPHAD 1(4):341–359. doi: 10.1016/0364-5916(77)90011-6 (10.1016/0364-5916(77)90011-6) / CALPHAD by AR Miedema (1977)
  38. Yang X, Chen SY, Cotton JD, Zhang Y (2014) Phase stability of Low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM 66(10):2009–2020. doi: 10.1007/s11837-014-1059-z (10.1007/s11837-014-1059-z) / JOM by X Yang (2014)
  39. Gao MC, Carney CS, Doğan ÖN, Jablonksi PD, Hawk JA, Alman DE (2015) Design of refractory high-entropy alloys. JOM 67(11):2653–2669. doi: 10.1007/s11837-015-1617-z (10.1007/s11837-015-1617-z) / JOM by M. C. Gao (2015)
  40. Guo S, Ng C, Wang ZJ, Liu CT (2014) Solid solutioning in equiatomic alloys: limit set by topological instability. J Alloys Compd 583:410–413. doi: 10.1016/j.jallcom.2013.08.213 (10.1016/j.jallcom.2013.08.213) / J Alloys Compd by S Guo (2014)
  41. Zhang F, Zhang C, Chen SL, Zhu J, Cao WS, Kattner UR (2014) An understanding of high entropy alloys from phase diagram calculations. CALPHAD 45:1–10 (10.1016/j.calphad.2013.10.006) / CALPHAD by F Zhang (2014)
  42. Zhang C, Zhang F, Chen SL, Cao WS (2012) Computational thermodynamics aided high-entropy alloy design. JOM 64(7):839–845. doi: 10.1007/s11837-012-0365-6 (10.1007/s11837-012-0365-6) / JOM by C Zhang (2012)
  43. Senkov ON, Miller JD, Miracle DB, Woodward C (2015) Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Commun 6(1–10):6529. doi: 10.1038/ncomms7529 (10.1038/ncomms7529) / Nature Commun by ON Senkov (2015)
  44. Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z, Ruan H, Li T (2014) A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep 4:1–5. doi: 10.1038/srep06200 (10.1038/srep06200) / Sci Rep by Y Lu (2014)
  45. Liu S, Gao MC, Liaw PK, Zhang Y (2015) Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys. J Alloys Compd 619:610–615. doi: http://dx.doi.org/10.1016/j.jallcom.2014.09.073 (10.1016/j.jallcom.2014.09.073) / Journal of Alloys and Compounds by S. Liu (2015)
  46. Miracle DB, Miller JD, Senkov ON, Woodward C, Uchic MD, Tiley J (2014) Exploration and development of high entropy alloys for structural applications. Entropy 16:494–525 (10.3390/e16010494) / Entropy by DB Miracle (2014)
  47. Otto F, Yang Y, Bei H, George EP (2013) Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater 61:2628–2638. doi: 10.1016/j.actamat.2013.01.042 (10.1016/j.actamat.2013.01.042) / Acta Mater by F Otto (2013)
  48. PandatTM Thermodynamic Calculations and Kinetic Simulations. CompuTherm LLC, Madison, WI 53719, USA. http://www.computherm.com
  49. Scheil E (1942) Comments on the layer crystal formation. Z Metallkd 34:70–72 / Z Metallkd by E Scheil (1942)
  50. Gulliver GH (1913) The quantitative effect of rapid cooling upon the constitution of binary alloys. J Ins Met 9:120–157 / J Ins Met by GH Gulliver (1913)
  51. Middleburgh SC, King DM, Lumpkin GR (2015) Atomic scale modelling of hexagonal structured metallic fission product alloys. R Soc Open Sci 2:140292. doi: http://dx.doi.org/10.1098/rsos.140292 (10.1098/rsos.140292) / Royal Society Open Science by S. C. Middleburgh (2015)
  52. Cotton JD (2014) Forget entropy: an informatics approach to identifying useful complex alloy compositions, presentation at Compositionally complex alloys workshop, Munich, Germany, July 16–18, 2014
  53. ASM Alloy Phase Diagram Database. http://www1.asminternational.org/asmenterprise/apd/
  54. Praveen S, Murty BS, Kottada RS (2012) Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mat Sci Eng A 534:83–89. doi: 10.1016/j.msea.2011.11.044 (10.1016/j.msea.2011.11.044) / Mat Sci Eng A by S Praveen (2012)
  55. Singh AK, Subramaniam A (2014) On the formation of disordered solid solutions in multi-component alloys. J Alloys Compd 587:113–119. doi: 10.1016/j.jallcom.2013.10.133 (10.1016/j.jallcom.2013.10.133) / J Alloys Compd by AK Singh (2014)
  56. Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46(12):2817–2829. doi: 10.2320/matertrans.46.2817 (10.2320/matertrans.46.2817) / Mater Trans by A Takeuchi (2005)
  57. Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2015) The generalized thermodynamic rule for phase selection in multicomponent alloys. Intermetallics 59:75–80. doi: 10.1016/j.intermet.2014.12.011 (10.1016/j.intermet.2014.12.011) / Intermetallics by YF Ye (2015)
  58. Mihalkovič M, Widom M (2004) Ab initio calculations of cohesive energies of Fe-based glass-forming alloys. Phys Rev B 70(14):144107. doi: 10.1103/PhysRevB.70.144107 (10.1103/PhysRevB.70.144107) / Phys Rev B by M Mihalkovič (2004)
  59. Widom M, Huhn WP, Maiti S, Steurer W (2014) Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall Mater Trans A 45A(1):196–200. doi: 10.1007/s11661-013-2000-8 (10.1007/s11661-013-2000-8) / Metall Mater Trans A by M Widom (2014)
  60. Huhn WP, Widom M, Cheung AM, Shiflet GJ, Poon SJ, Lewandowski J (2014) First-principles calculation of elastic moduli of early-late transition metal alloys. Phys Rev B 89(10). doi: 10.1103/PhysRevB.89.104103 (10.1103/PhysRevB.89.104103)
  61. Ganesh P, Widom M (2008) Ab initio simulations of geometrical frustration in supercooled liquid Fe and Fe-based metallic glass. Phys Rev B 77(1):014205. doi: 10.1103/PhysRevB.77.014205 (10.1103/PhysRevB.77.014205) / Phys Rev B by P Ganesh (2008)
  62. Santodonato LJ, Zhang Y, Feygenson M, Parish CM, Gao MC, Weber RJK, Neuefeind JC, Tang Z, Liaw PK (2015) Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nature Commun 6:5964. doi: 10.1038/ncomms6964 (10.1038/ncomms6964) / Nature Commun by LJ Santodonato (2015)
  63. Nose S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81(1):511–519 (10.1063/1.447334) / J Chem Phys by S Nose (1984)
  64. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953. doi: http://dx.doi.org/10.1103/PhysRevB.50.17953 (10.1103/PhysRevB.50.17953) / Physical Review B by P. E. Blöchl (1994)
  65. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou XL, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100(13):136406. doi:136406 10.1103/PhysRevLett.100.136406 (10.1103/PhysRevLett.100.136406)
  66. Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J (2011) Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59(1):182–190. doi: 10.1016/j.actamat.2010.09.023 (10.1016/j.actamat.2010.09.023) / Acta Mater by S Singh (2011)
  67. Singh S, Wanderka N, Kiefer K, Siemensmeyer K, Banhart J (2011) Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. Ultramicroscopy 111(6):619–622. doi: 10.1016/j.ultramic.2010.12.001 (10.1016/j.ultramic.2010.12.001) / Ultramicroscopy by S Singh (2011)
  68. Tong CJ, Chen YL, Chen SK, Yeh JW, Shun TT, Tsau CH, Lin SJ, Chang SY (2005) Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mat Trans A 36A(4):881–893. doi: 10.1007/s11661-005-0283-0 (10.1007/s11661-005-0283-0) / Metall Mat Trans A by CJ Tong (2005)
Dates
Type When
Created 9 years, 4 months ago (April 26, 2016, 9:24 p.m.)
Deposited 6 years, 3 months ago (June 1, 2019, 6:07 p.m.)
Indexed 2 days ago (Aug. 31, 2025, 6:27 a.m.)
Issued 9 years, 8 months ago (Jan. 1, 2016)
Published 9 years, 8 months ago (Jan. 1, 2016)
Published Online 9 years, 4 months ago (April 28, 2016)
Published Print 9 years, 8 months ago (Jan. 1, 2016)
Funders 0

None

@inbook{Gao_2016, title={Design of High-Entropy Alloys}, ISBN={9783319270135}, url={http://dx.doi.org/10.1007/978-3-319-27013-5_11}, DOI={10.1007/978-3-319-27013-5_11}, booktitle={High-Entropy Alloys}, publisher={Springer International Publishing}, author={Gao, Michael C.}, year={2016}, pages={369–398} }