Crossref
book-chapter
Springer International Publishing
Mathematical Physics Studies (297)
References
73
Referenced
7
-
von Lilienfeld, O.A.: Inside cover. Int. J. Quantum Chem. 113(12), iii-iv (2013). doi:10.1002/qua.24465. http://dx.doi.org/10.1002/qua.24465
(
10.1002/qua.24465
) - Burke, K.: Any ab initio method must either be void of empirical parameters, or at least have parameters that do not depend on the system being studied. Oral communication, IPAM, UCLA (2011)
-
von Lilienfeld, O.A., Andrienko, D.: Coarse-grained interaction potentials for polyaromatic hydrocarbons. J. Chem. Phys. 124, 054307 (2006)
(
10.1063/1.2162543
) -
Kirkpatrick, P., Ellis, C.: Chemical space. Nature 432, 823 (2004)
(
10.1038/432823a
) / Nature by P Kirkpatrick (2004) -
von Lilienfeld, O.A.: First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties. Int. J. Quantum Chem. 113(12), 1676–1689 (2013). doi:10.1002/qua.24375. http://dx.doi.org/10.1002/qua.24375
(
10.1002/qua.24375
) -
Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)
(
10.1103/PhysRev.136.B864
) -
Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)
(
10.1103/PhysRev.140.A1133
) / Phys. Rev. by W Kohn (1965) -
Kuhn, C., Beratan, D.N.: Inverse strategies for molecular design. J. Phys. Chem. 100, 10595–10599 (1996)
(
10.1021/jp960518i
) -
Marder, S.R., Beratan, D.N., Cheng, L.T.: Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules. Science 252, 103–106 (1991)
(
10.1126/science.252.5002.103
) / Science by SR Marder (1991) -
Wang, M., Hu, X., Beratan, D.N., Yang, W.: Designing molecules by optimizing potentials. J. Am. Chem. Soc. 128, 3228 (2006)
(
10.1021/ja0572046
) / J. Am. Chem. Soc. by M Wang (2006) -
Franceschetti, A., Zunger, A.: The inverse band-structure problem of finding an atomic configuration with given electronic properties. Nature 402, 60 (1999)
(
10.1038/46995
) -
von Lilienfeld, O.A., Lins, R., Rothlisberger, U.: Variational particle number approach for rational compound design. Phys. Rev. Lett. 95, 153002 (2005)
(
10.1103/PhysRevLett.95.153002
) -
Sigmund, O., Torquato, S.: Design of materials with extreme thermal expansion using a three-phase topology optimiztion method. J. Mech. Phys. Solids 45(6), 1037–1067 (1997)
(
10.1016/S0022-5096(96)00114-7
) / J. Mech. Phys. Solids by O Sigmund (1997) -
Torquato, S., Hyun, S., Donev, A.: Multifunctional composites: Optimizing microstructures for simultaneous transport of heat and electricity. Phys. Rev. Lett. 89(26), 266601 (2002)
(
10.1103/PhysRevLett.89.266601
) -
Rechtsman, M.C., Stillinger, F.H., Torquato, S.: Optimized interactions for targeted self-assembly: application to ahoneycomb lattice. Phys. Rev. Lett. 95, 228301 (2005)
(
10.1103/PhysRevLett.95.228301
) -
Herrmann, C., Neugebauer, J., Reiher, M.: Finding a needle in a haystack: direct determination of vibrational signatures in complex systems. New J. Chem. 31, 818–831 (2007)
(
10.1039/b618769m
) -
Oganov, A.R., Glass, C.W.: Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006)
(
10.1063/1.2210932
) -
Csányi, G., Albaret, T., Payne, M.C., Vita, A.D.: Learn on the fly: a hybrid classical and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett. 93, 175503 (2004)
(
10.1103/PhysRevLett.93.175503
) -
Maurer, P., Laio, A., Hugosson, H.W., Colombo, M.C., Rothlisberger, U.: Automated parametrization of biomolecular force fields from quantum mechanics/molecular mechanics (QM/MM) simulations through force matching. J. Chem. Theory Comput. 3, 628–639 (2007)
(
10.1021/ct600284f
) / J. Chem. Theory Comput. by P Maurer (2007) -
Bayly, C.I., Cieplak, P., Cornell, W., Kollman, P.A.: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the resp model. J. Phys. Chem. 97(40), 10269–10280 (1993). doi:10.1021/j100142a004. http://pubs.acs.org/doi/abs/10.1021/j100142a004
(
10.1021/j100142a004
) -
von Lilienfeld, O.A., Tavernelli, I., Rothlisberger, U., Sebastiani, D.: Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys. Rev. Lett. 93, 153004 (2004)
(
10.1103/PhysRevLett.93.153004
) -
von Lilienfeld, O.A., Tavernelli, I., Rothlisberger, U., Sebastiani, D.: Variational optimization of effective atom centered potentials for molecular properties. J. Chem. Phys. 122, 014113 (2005)
(
10.1063/1.1829051
) -
Schiffmann, C., Sebastiani, D.: Artificial bee colony optimization of capping potentials for hybrid qm/mm calculations. J. Chem. Theory Comput. 7, 1307–1315 (2011). doi:10.1021/ct1007108
(
10.1021/ct1007108
) -
von Lilienfeld, O.A.: Force correcting atom centered potentials for generalized gradient approximated density functional theory: Approaching hybrid functional accuracy for geometries and harmonic frequencies in small chlorofluorocarbons. Molecular Physics 0(ja), null (0). doi: 10.1080/00268976.2013.793834
(
10.1080/00268976.2013.793834
) -
Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
(
10.1093/comjnl/7.4.308
) / Comput. J. by JA Nelder (1965) -
Jóhannesson, G.H., Bligaard, T., Ruban, A.V., Skriver, H.L., Jacobsen, K.W., Nørskov, J.K.: Combined electronic structure and evolutionary search approach to materials design. Phys. Rev. Lett. 88, 255506 (2002)
(
10.1103/PhysRevLett.88.255506
) -
Curtarolo, S., Hart, G.L.W., Nardelli, M.B., Mingo, N., Sanvito, S., Levy, O.: The high-throughput highway to computational materials design. Nat. Mater 12(3), 191–201 (2013). doi:10.1038/nmat3568. http://dx.doi.org/10.1038/nmat3568
(
10.1038/nmat3568
) -
Setyawan, W., Curtarolo, S.: High-throughput electronic band structure calculations: challenges and tools. Comp. Mat. Sci. 49, 299 (2010)
(
10.1016/j.commatsci.2010.05.010
) / Comp. Mat. Sci. by W Setyawan (2010) -
Nørskov, J.K., Bligaard, T., Rossmeisl, J., Christensen, C.H.: Towards the computational design of solid catalysts. Nat. Chem. 1, 37 (2009)
(
10.1038/nchem.121
) -
Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B., Shao-Horn, Y.: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). doi:10.1126/science.1212858. http://www.sciencemag.org/content/334/6061/1383.abstract
(
10.1126/science.1212858
) -
Zhang, L., Henkelman, G.: Tuning the oxygen reduction activity of pd shell nanoparticles with random alloy cores. J. Phys. Chem. C 116(39), 20860–20865 (2012). doi:10.1021/jp305367z
(
10.1021/jp305367z
) -
Froemming, N.S., Henkelman, G.: Optimizing core-shell nanoparticle catalysts with a genetic algorithm. J. Chem. Phys. 131, 234103 (2009)
(
10.1063/1.3272274
) -
Reetz, M.T.: Controlling the enantioselectivity of enzymes by directed evolution: Practical and theoretical ramifications. Proc. Natl. Acad. Sci. USA 101, 5716 (2004)
(
10.1073/pnas.0306866101
) / Proc. Natl. Acad. Sci. USA by MT Reetz (2004) -
Reetz, M.T., Kahakeaw, D., Lohmer, R.: Addressing the numbers problem in directed evolution. ChemBioChem 9(11), 1797–1804 (2008). doi:10.1002/cbic.200800298. http://dx.doi.org/10.1002/cbic.200800298
(
10.1002/cbic.200800298
) -
Reetz, M.T.: Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists. Tetrahedron 68(37), 7530–7548 (2012). doi:10.1016/j.tet.2012.05.093. http://www.sciencedirect.com/science/article/pii/S0040402012008113
(
10.1016/j.tet.2012.05.093
) -
Siegel, J.B., Zanghellini, A., Lovick, H.M., Kiss, G., Lambert, A.R., St.Clair, J.L., Gallaher, J.L., Hilvert, D., Gelb, M.H., Stoddard, B.L., Houk, K.N., Michael, F.E., Baker, D.: Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329, 309 (2010)
(
10.1126/science.1190239
) -
Pettifor, D.: Bonding and structure of molecules and solids. Oxford University Press, Oxford (1995)
(
10.1093/oso/9780198517870.001.0001
) - Muto, T.: Sci. Pap. Inst. Phys. Chem. Res. 34, 377 (1938) / Sci. Pap. Inst. Phys. Chem. Res. by T Muto (1938)
-
Nørdheim, L.: Ann. Phys. 9, 607 (1931)
(
10.1002/andp.19314010507
) -
van Gunsteren, W.F., Daura, X., Mark, A.E.: Computation of free energy. Helv. Chim. Acta 85, 3113 (2002)
(
10.1002/1522-2675(200210)85:10<3113::AID-HLCA3113>3.0.CO;2-0
) -
Widom, B.: Some topics in the theory of fluids. J. Chem. Phys. 39(11), 2808–2812 (1963)
(
10.1063/1.1734110
) / J. Chem. Phys. by B Widom (1963) -
Leung, K., Rempe, S.B., von Lilienfeld, O.A.: Ab initio molecular dynamics calculations of ion hydration free energies. J. Chem. Phys. 130, 204507 (2009)
(
10.1063/1.3137054
) -
Jayaraman, S., Thompson, A.P., von Lilienfeld, O.A.: Molten salt eutectics from atomistic simulations. Phys. Rev. E 84, 030201 (2011)
(
10.1103/PhysRevE.84.030201
) -
Jayaraman, S., Thompson, A.P., von Lilienfeld, O.A., Maginn, E.J.: Molecular simulation of the thermal and transport properties of three alkali nitrate salts. Ind. Eng. Chem. Res. 49, 559 (2010)
(
10.1021/ie9007216
) -
Tidor, B.: J. Phys. Chem. 97, 1069 (1993)
(
10.1021/j100107a015
) / J. Phys. Chem. by B Tidor (1993) -
Oostenbrink, C.: Efficient free energy calculations on small molecule host-guest systems–a combined linear interaction energy/one-step perturbation approach. J. Comp. Chem. 30, 212 (2009)
(
10.1002/jcc.21116
) / J. Comp. Chem. by C Oostenbrink (2009) -
Oostenbrink, C., van Gunsteren, W.F.: Free energies of ligand binding for structurally diverse compounds. Proc. Natl. Acad. Sci. USA 102, 6750 (2005)
(
10.1073/pnas.0407404102
) / Proc. Natl. Acad. Sci. USA by C Oostenbrink (2005) - Jorgensen, W.L.: The many roles of computation in drug discovery. Science 1, 37 (2004)
-
Weigend, F., Schrodt, C., Ahlrichs, R.: Atom distributions in binary atom clusters: a perturbational approach and its validation in a case study. J. Chem. Phys. 121, 10380 (2004)
(
10.1063/1.1811079
) -
Rinderspacher, B.C., Andzelm, J., Rawlett, A., Dougherty, J., Beratan, D.N., Yang, W.: Discrete optimization of electronic hyperpolarizabilities in a chemical subspace. J. Chem. Theory Comput. 5, 3321 (2009)
(
10.1021/ct900325p
) / J. Chem. Theory Comput. by BC Rinderspacher (2009) -
Beste, A., Harrison, R.J., Yanai, T.: Direct computation of general chemical energy differences: application to ionization potentials, excitation, and bond energies. J. Phys. Chem. 125, 074101 (2006)
(
10.1063/1.2244559
) -
von Lilienfeld, O.A., Tuckerman, M.E.: Alchemical variation of intermolecular energies according to molecular grand-canonical ensemble density functional theory. J. Chem. Theory Comput. 3, 1083 (2007)
(
10.1021/ct700002c
) / J. Chem. Theory Comput. by OA von Lilienfeld (2007) -
Geerlings, P., Proft, F.D., Langenaeker, W.: Conceptual density functional theory. Chem. Rev. 103, 1793 (2003)
(
10.1021/cr990029p
) -
Cardenas, C., Tiznado, W., Ayers, P.W., Fuentealba, P.: The Fukui potential and the capacity of charge and the global hardness of atoms. J. Phys. Chem. A 115, 2325–2331 (2011)
(
10.1021/jp109955q
) -
Lesiuk, M., Balawender, R., Zachara, J.: Higher order alchemical derivatives from coupled perturbed self-consistent field theory. J. Chem. Phys. 136, 034104 (2012)
(
10.1063/1.3674163
) -
Yang, W., Cohen, A.J., Proft, F.D., Geerlings, P.: Analytical evaluation of fukui functions and real-space linear response function. J. Chem. Phys. 136, 144110 (2012)
(
10.1063/1.3701562
) -
Smith, P.E., van Gunsteren, W.F.: Predictions of free energy differences from a single simulation of the initial state. J. Chem. Phys. 100, 577 (1994)
(
10.1063/1.466975
) / J. Chem. Phys. by PE Smith (1994) -
Pérez, A., von Lilienfeld, O.A.: Path integral computation of quantum free energy differences due to alchemical transformations involving mass and potential. J. Chem. Theory Comput. 7, 2358 (2011)
(
10.1021/ct2000556
) / J. Chem. Theory Comput. by A Pérez (2011) -
Balamurugan, D., Yang, W., Beratan, D.N.: Exploring chemical space with discrete, gradient, and hybrid optimization methods. J. Chem. Phys. 129, 174105 (2008)
(
10.1063/1.2987711
) -
d’Avezac, M., Zunger, A.: Identifying the minimum-energy atomic configuration on a lattice: Lamarckian twist on darwinian evolution. Phys. Rev. B 78, 064102 (2008)
(
10.1103/PhysRevB.78.064102
) -
d’Avezac, M., Zunger, A.: Finding the atomic configuration with a required physical property in multi-atom structures. J. Phys.: Condens. Matter 19, 402201 (2007)
(
10.1088/0953-8984/19/40/402201
) -
Sumpter, B.G., Noid, D.W.: Potential energy surfaces for macromolecules. a neural network technique. Chem. Phys. Lett. 192(5–6), 455–462 (1992). doi:10.1016/0009-2614(92)85498-Y. http://www.sciencedirect.com/science/article/pii/000926149285498Y
(
10.1016/0009-2614(92)85498-Y
) -
Lorenz, S., Gross, A., Scheffler, M.: Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem. Phys. Lett. 395, 210 (2004)
(
10.1016/j.cplett.2004.07.076
) / Chem. Phys. Lett. by S Lorenz (2004) -
Manzhos, S., Carrington, Jr., T.: A random-sampling high dimensional model representation neural network for building potential energy surfaces. J. Chem. Phys. 125, 084109–084123 (2006)
(
10.1063/1.2336223
) -
Behler, J., Parrinello, M.: Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007)
(
10.1103/PhysRevLett.98.146401
) -
Bartók, A.P., Payne, M.C., Kondor, R., Csányi, G.: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104(13), 136403 (2010)
(
10.1103/PhysRevLett.104.136403
) -
Rupp, M., Tkatchenko, A., Müller, K.R., von Lilienfeld, O.A.: Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012)
(
10.1103/PhysRevLett.108.058301
) -
Blum, L.C., Reymond, J.L.: 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc. 131, 8732 (2009)
(
10.1021/ja902302h
) -
Montavon, G., Rupp, M., Gobre, V., Vazquez-Mayagoitia, A., Hansen, K., Tkatchenko, A., Müller, K.R., von Lilienfeld, O.A.: Machine learning of molecular electronic properties in chemical space. New J. Phys. (2013, in press)
(
10.1088/1367-2630/15/9/095003
) -
Hautier, G., Fischer, C.C., Jain, A., Mueller, T., Ceder, G.: Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem. Mater. 22, 3762 (2010)
(
10.1021/cm100795d
) -
Hachmann, J., et al.: The harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid. J. Phys. Chem. Lett. 2, 2241–2251 (2011)
(
10.1021/jz200866s
) -
Jain, A., Hautier, G., Moore, C.J., Ong, S.P., Fischer, C.C., Mueller, T., Persson, K.A., Ceder, G.: A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50(8), 2295–2310 (2011). doi:10.1016/j.commatsci.2011.02.023. http://linkinghub.elsevier.com/retrieve/pii/S0927025611001133
(
10.1016/j.commatsci.2011.02.023
) - Ong, S.P., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Bailey, D., Skinner, D., Persson, K.A., Ceder, G.: The Materials Project (2011). http://materialsproject.org/
Dates
Type | When |
---|---|
Created | 11 years, 1 month ago (July 2, 2014, 4:26 a.m.) |
Deposited | 1 year, 2 months ago (May 28, 2024, 1:32 p.m.) |
Indexed | 4 months, 4 weeks ago (March 25, 2025, 6:28 p.m.) |
Issued | 11 years, 7 months ago (Jan. 1, 2014) |
Published | 11 years, 7 months ago (Jan. 1, 2014) |
Published Online | 11 years, 1 month ago (July 2, 2014) |
Published Print | 11 years, 7 months ago (Jan. 1, 2014) |
@inbook{von_Lilienfeld_2014, title={Towards the Computational Design of Compounds from First Principles}, ISBN={9783319063799}, ISSN={2352-3905}, url={http://dx.doi.org/10.1007/978-3-319-06379-9_9}, DOI={10.1007/978-3-319-06379-9_9}, booktitle={Many-Electron Approaches in Physics, Chemistry and Mathematics}, publisher={Springer International Publishing}, author={von Lilienfeld, O. Anatole}, year={2014}, pages={169–189} }