Crossref book-chapter
Springer London
Multimedia Data Mining and Knowledge Discovery (297)
Bibliography

Brecheisen, S., Kriegel, H.-P., Krőger, P., Pfeifle, M., Schubert, M., & Zimek, A. (n.d.). Density-Based Data Analysis and Similarity Search. Multimedia Data Mining and Knowledge Discovery, 94–115.

Authors 6
  1. Stefan Brecheisen (first)
  2. Hans-Peter Kriegel (additional)
  3. Peer Krőger (additional)
  4. Martin Pfeifle (additional)
  5. Matthias Schubert (additional)
  6. Arthur Zimek (additional)
References 17 Referenced 1
  1. Jagadish HV. A retrieval technique for similar shapes. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'91), Denver, CO; 1991, pp. 208–217. (10.1145/115790.115821)
  2. Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases. In: Proc. 4th. Int. Conf. on Foundations of Data Organization and Algorithms (FODO'93), Evanston, IL. vol. 730 of Lecture Notes in Computer Science (LNCS). Springer; 1993, pp. 69–84. (10.1007/3-540-57301-1_5)
  3. Faloutsos C, Barber R, Flickner M, Hafner J, et al. Efficient and effective querying by image content. Journal of Intelligent Information Systems 1994;3:231–262. (10.1007/BF00962238) / Journal of Intelligent Information Systems by C Faloutsos (1994)
  4. Faloutsos C, Ranganathan M, Manolopoulos Y. Fast subsequence matching in time-series databases. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'94), Minneapolis, MN; 1994, pp. 419–429. (10.1145/191839.191925)
  5. Agrawal R, Lin KI, Sawhney HS, Shim K. Fast similarity search in the presence of noise, scaling, and translation in time-series databases. In: Proc. 21th Int. Conf. on Very Large Databases (VLDB'95); 1995, pp. 490–501.
  6. Berchtold S, Keim DA, Kriegel HP. Using extended feature objects for partial similarity retrieval, VLDB Journal 1997;6(4):333–348. (10.1007/s007780050049) / VLDB Journal by S Berchtold (1997)
  7. Berchtold S, Kriegel HP. S3: Similarity search in CAD database systems. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'97), Tucson, AZ; 1997, pp. 564–567. (10.1145/253260.253407)
  8. Keim DA. Efficient geometry-based similarity search of 3D spatial databases. In: Proc. ACMSIGMOD Int. Conf. on Management of Data (SIGMOD'99), Philadelphia, PA; 1999, pp. 419–430. (10.1145/304182.304219)
  9. Kriegel HP, Kröger P, Mashael Z, Pfeifle M, Pötke M, Seidl T. Effective Similarity Search on Voxelized CAD Objects. In: Proc. 8th Int. Conf. on Database Systems for Advanced Applications (DASFAA'03), Kyoto, Japan; 2003, pp. 27–36. (10.1109/DASFAA.2003.1192365)
  10. Kriegel HP, Brecheisen S, Kröger P, Pfeifle M, Schubert M. Using sets of feature vectors for similarity search on voxelized CAD objects. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'03), San Diego, CA; 2003, pp. 587–598. (10.1145/872757.872828)
  11. Ankerst M, Breunig MM, Kriegel HP, Sander J. OPTICS: Ordering points to identify the clustering structure. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'99), Philadelphia, PA; 1999, pp. 49–60. (10.1145/304182.304187)
  12. McQueen J. Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symp. Math. Statist. Prob., Vol. 1; 1967, pp. 281–297. / 5th Berkeley Symp. Math. Statist. Prob. by J McQueen (1967)
  13. Breunig MM, Kriegel HP, Kröger P, Sander J. Data bubbles: Quality preserving performance boosting for hierarchical clustering. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'01), Santa Barbara, CA; 2001, pp. 79–90. (10.1145/376284.375672)
  14. Achtert E, BöhmC, KriegelHP, Kröger P. Online hierarchical clustering in a datawarehouse environment. In: Proc. 5th IEEE Int. Conf. on Data Mining (ICDM'05), Houston, TX; 2005, pp. 10–17. (10.1109/ICDM.2005.111)
  15. Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD'96), Portland, OR. AAAI Press; 1996, pp. 291–316. / Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD'96) by M Ester (1996)
  16. Sander J, Qin X, Lu Z, Niu N, Kovarsky A. Automatic extraction of clusters from hierarchical clustering representations. In: Proc. 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2003), Seoul, Korea; 2003. pp. 75–87. (10.1007/3-540-36175-8_8)
  17. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Research 2000;28:235–242. (10.1093/nar/28.1.235) / Nucleic Acids Research by HM Berman (2000)
Dates
Type When
Created 17 years, 10 months ago (Oct. 18, 2007, 8:19 a.m.)
Deposited 4 years, 3 months ago (May 1, 2021, 2:04 p.m.)
Indexed 11 months, 3 weeks ago (Sept. 4, 2024, 7:30 p.m.)
Funders 0

None

@inbook{Brecheisen, title={Density-Based Data Analysis and Similarity Search}, ISBN={9781846284366}, url={http://dx.doi.org/10.1007/978-1-84628-799-2_6}, DOI={10.1007/978-1-84628-799-2_6}, booktitle={Multimedia Data Mining and Knowledge Discovery}, publisher={Springer London}, author={Brecheisen, Stefan and Kriegel, Hans-Peter and Krőger, Peer and Pfeifle, Martin and Schubert, Matthias and Zimek, Arthur}, pages={94–115} }