10.1007/978-1-4939-7231-9_4
Crossref book-chapter
Springer New York
Methods in Molecular Biology (297)
Bibliography

Webb, B., & Sali, A. (2017). Protein Structure Modeling with MODELLER. Functional Genomics, 39–54.

Authors 2
  1. Benjamin Webb (first)
  2. Andrej Sali (additional)
References 56 Referenced 380
  1. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96 (10.1126/science.1065659) / Science by D Baker (2001)
  2. Schwede T, Sali A, Honig B, Levitt M, Berman H, Jones D, Brenner S, Burley S, Das R, Dokholyan N, Dunbrack RJ, Fidelis K, Fiser A, Godzik A, Huang Y, Humblet C, Jacobson M, Joachimiak A, Krystek SJ, Kortemme T, Kryshtafovych A, Montelione G, Moult J, Murray D, Sanchez R, Sosnick T, Standley D, Stouch T, Vajda S, Vasquez M, Westbrook J, Wilson I (2009) Outcome of a workshop on applications of protein models in biomedical research. Structure 17(2):151–159 (10.1016/j.str.2008.12.014) / Structure by T Schwede (2009)
  3. Zhang Y (2008) Progress and challenges in protein structure prediction. Curr Opin Struct Biol 18(3):342–348. doi: 10.1016/j.sbi.2008.02.004 (10.1016/j.sbi.2008.02.004) / Curr Opin Struct Biol by Y Zhang (2008)
  4. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325 (10.1146/annurev.biophys.29.1.291) / Annu Rev Biophys Biomol Struct by MA Marti-Renom (2000)
  5. Eswar N, Sali A (2009) Protein structure modeling. In: Sussman JL, Spadon P (eds) From molecules to medicine, structure of biological macromolecules and its relevance in combating new diseases and bioterrorism. NATO Science for peace and security series – A: chemistry and biology. Springer-Verlag, Dordrecht, pp 139–151 / From molecules to medicine, structure of biological macromolecules and its relevance in combating new diseases and bioterrorism. NATO Science for peace and security series – A: chemistry and biology by N Eswar (2009)
  6. Ginalski K (2006) Comparative modeling for protein structure prediction. Curr Opin Struct Biol 16(2):172–177. doi: 10.1016/j.sbi.2006.02.003 (10.1016/j.sbi.2006.02.003) / Curr Opin Struct Biol by K Ginalski (2006)
  7. Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382. doi: 10.1146/annurev.biochem.77.062906.171838 (10.1146/annurev.biochem.77.062906.171838) / Annu Rev Biochem by R Das (2008)
  8. Zhang Y, Skolnick J (2004) Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 101(20):7594–7599. doi: 10.1073/pnas.0305695101 (10.1073/pnas.0305695101) / Proc Natl Acad Sci USA by Y Zhang (2004)
  9. Simons KT, Bonneau R, Ruczinski I, Baker D (1999) Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins Suppl 3:171–176 (10.1002/(SICI)1097-0134(1999)37:3+<171::AID-PROT21>3.0.CO;2-Z) / Proteins Suppl by KT Simons (1999)
  10. Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A, Braberg H, Yang Z, Meng EC, Pettersen EF, Huang CC, Datta RS, Sampathkumar P, Madhusudhan MS, Sjolander K, Ferrin TE, Burley SK, Sali A (2011) ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 39:465–474 (10.1093/nar/gkq1091) / Nucleic Acids Res by U Pieper (2011)
  11. Fiser A, Do RKG, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9(9):1753–1773 (10.1110/ps.9.9.1753) / Protein Sci by A Fiser (2000)
  12. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815 (10.1006/jmbi.1993.1626) / J Mol Biol by A Sali (1993)
  13. Marti-Renom MA, Madhusudhan MS, Sali A (2004) Alignment of protein sequences by their profiles. Protein Sci 13(4):1071–1087 (10.1110/ps.03379804) / Protein Sci by MA Marti-Renom (2004)
  14. Madhusudhan MS, Marti-Renom MA, Sanchez R, Sali A (2006) Variable gap penalty for protein sequence-structure alignment. Protein Eng Des Sel 19(3):129–133 (10.1093/protein/gzj005) / Protein Eng Des Sel by MS Madhusudhan (2006)
  15. Madhusudhan MS, Webb BM, Marti-Renom MA, Eswar N, Sali A (2009) Alignment of multiple protein structures based on sequence and structure features. Protein Eng Des Sel 22:569–574 (10.1093/protein/gzp040) / Protein Eng Des Sel by MS Madhusudhan (2009)
  16. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614. doi: 10.1002/jcc.21287 (10.1002/jcc.21287) / J Comput Chem by BR Brooks (2009)
  17. Sali A, Overington JP (1994) Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 3(9):1582–1596 (10.1002/pro.5560030923) / Protein Sci by A Sali (1994)
  18. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15(11):2507–2524 (10.1110/ps.062416606) / Protein Sci by MY Shen (2006)
  19. Wu G, Fiser A, ter Kuile B, Sali A, Muller M (1999) Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc Natl Acad Sci USA 96(11):6285–6290 (10.1073/pnas.96.11.6285) / Proc Natl Acad Sci USA by G Wu (1999)
  20. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242 (10.1093/nar/28.1.235) / Nucleic Acids Res by HM Berman (2000)
  21. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197 (10.1016/0022-2836(81)90087-5) / J Mol Biol by TF Smith (1981)
  22. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453 (10.1016/0022-2836(70)90057-4) / J Mol Biol by SB Needleman (1970)
  23. John B, Sali A (2003) Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res 31(14):3982–3992. doi: 10.1093/nar/gkg460 (10.1093/nar/gkg460) / Nucleic Acids Res by B John (2003)
  24. Melo F, Sanchez R, Sali A (2002) Statistical potentials for fold assessment. Protein Sci 11(2):430–448. doi: 10.1110/ps.22802 (10.1110/ps.22802) / Protein Sci by F Melo (2002)
  25. Eramian D, Eswar N, Shen M, Sali A (2008) How well can the accuracy of comparative protein structure models be predicted? Protein Sci 17(11):1881–1893 (10.1110/ps.036061.108) / Protein Sci by D Eramian (2008)
  26. Vajda S, Kozakov D (2009) Convergence and combination of methods in protein-protein docking. Curr Opin Struct Biol 19(2):164–170. doi: 10.1016/j.sbi.2009.02.008 (10.1016/j.sbi.2009.02.008) / Curr Opin Struct Biol by S Vajda (2009)
  27. Lensink MF, Wodak SJ (2010) Docking and scoring protein interactions: CAPRI 2009. Proteins 78(15):3073–3084. doi: 10.1002/prot.22818 (10.1002/prot.22818) / Proteins by MF Lensink (2010)
  28. Alber F, Forster F, Korkin D, Topf M, Sali A (2008) Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem 77:443–477 (10.1146/annurev.biochem.77.060407.135530) / Annu Rev Biochem by F Alber (2008)
  29. Russel D, Lasker K, Webb B, Velazquez-Muriel J, Tjioe E, Schneidman-Duhovny D, Peterson B, Sali A (2012) Putting the pieces together: integrative structure determination of macromolecular assemblies. PLoS Biol 10(1):e1001244 (10.1371/journal.pbio.1001244) / PLoS Biol by D Russel (2012)
  30. Robinson C, Sali A, Baumeister W (2007) The molecular sociology of the cell. Nature 450(7172):973–982 (10.1038/nature06523) / Nature by C Robinson (2007)
  31. Ward A, Sali A, Wilson I (2013) Integrative structural biology. Science 339(6122):913–915 (10.1126/science.1228565) / Science by A Ward (2013)
  32. Lasker K, Sali A, Wolfson HJ (2010) Determining macromolecular assembly structures by molecular docking and fitting into an electron density map. Proteins:Struct Funct Bioinform 78:3205–3211 (10.1002/prot.22845) / Proteins:Struct Funct Bioinform by K Lasker (2010)
  33. Tjioe E, Lasker K, Webb B, Wolfson H, Sali A (2011) MultiFit: a web server for fitting multiple protein structures into their electron microscopy density map. Nucleic Acids Res 39:167–170 (10.1093/nar/gkr490) / Nucleic Acids Res by E Tjioe (2011)
  34. Schneidman-Duhovny D, Hammel M, Sali A (2011) Macromolecular docking restrained by a small angle X-ray scattering profile. J Struct Biol 3:461–471 (10.1016/j.jsb.2010.09.023) / J Struct Biol by D Schneidman-Duhovny (2011)
  35. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12(2):85–94 (10.1093/protein/12.2.85) / Protein Eng by B Rost (1999)
  36. May AC (2004) Percent sequence identity; the need to be explicit. Structure 12(5):737–738. doi: 10.1016/j.str.2004.04.001 (10.1016/j.str.2004.04.001) / Structure by AC May (2004)
  37. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402 (10.1093/nar/25.17.3389) / Nucleic Acids Res by SF Altschul (1997)
  38. Pearson WR (1998) Empirical statistical estimates for sequence similarity searches. J Mol Biol 276(1):71–84. doi: 10.1006/jmbi.1997.1525 (10.1006/jmbi.1997.1525) / J Mol Biol by WR Pearson (1998)
  39. Steindel PA, Chen EH, Wirth JD, Theobald DL (2016) Gradual neofunctionalization in the convergent evolution of trichomonad lactate and malate dehydrogenases. Protein Sci 25(7):1319–1331. doi: 10.1002/pro.2904 (10.1002/pro.2904) / Protein Sci by PA Steindel (2016)
  40. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89(22):10915–10919 (10.1073/pnas.89.22.10915)
  41. Zhou H, Zhou Y (2005) Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 58(2):321–328. doi: 10.1002/prot.20308 (10.1002/prot.20308) / Proteins by H Zhou (2005)
  42. McGuffin LJ, Jones DT (2003) Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 19(7):874–881 (10.1093/bioinformatics/btg097) / Bioinformatics by LJ McGuffin (2003)
  43. Karchin R, Cline M, Mandel-Gutfreund Y, Karplus K (2003) Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. Proteins 51(4):504–514. doi: 10.1002/prot.10369 (10.1002/prot.10369) / Proteins by R Karchin (2003)
  44. Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310(1):243–257. doi: 10.1006/jmbi.2001.4762 (10.1006/jmbi.2001.4762) / J Mol Biol by J Shi (2001)
  45. Dunbrack RL Jr (2006) Sequence comparison and protein structure prediction. Curr Opin Struct Biol 16(3):374–384. doi: 10.1016/j.sbi.2006.05.006 (10.1016/j.sbi.2006.05.006) / Curr Opin Struct Biol by RL Dunbrack Jr (2006)
  46. Xiang Z (2006) Advances in homology protein structure modeling. Curr Protein Pept Sci 7(3):217–227 (10.2174/138920306777452312) / Curr Protein Pept Sci by Z Xiang (2006)
  47. Eramian D, Shen M, Devos D, Melo F, Sali A, Marti-Renom M (2006) A composite score for predicting errors in protein structure models. Protein Sci 15(7):1653–1666 (10.1110/ps.062095806) / Protein Sci by D Eramian (2006)
  48. Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55(2):351–367. doi: 10.1002/prot.10613 (10.1002/prot.10613) / Proteins by MP Jacobson (2004)
  49. Zhao S, Zhu K, Li J, Friesner RA (2011) Progress in super long loop prediction. Proteins 79(10):2920–2935. doi: 10.1002/prot.23129 (10.1002/prot.23129) / Proteins by S Zhao (2011)
  50. Fernandez-Fuentes N, Oliva B, Fiser A (2006) A supersecondary structure library and search algorithm for modeling loops in protein structures. Nucleic Acids Res 34(7):2085–2097. doi: 10.1093/nar/gkl156 (10.1093/nar/gkl156) / Nucleic Acids Res by N Fernandez-Fuentes (2006)
  51. van Vlijmen HW, Karplus M (1997) PDB-based protein loop prediction: parameters for selection and methods for optimization. J Mol Biol 267(4):975–1001. doi: 10.1006/jmbi.1996.0857 (10.1006/jmbi.1996.0857) / J Mol Biol by HW Vlijmen van (1997)
  52. Coutsias EA, Seok C, Jacobson MP, Dill KA (2004) A kinematic view of loop closure. J Comput Chem 25(4):510–528. doi: 10.1002/jcc.10416 (10.1002/jcc.10416) / J Comput Chem by EA Coutsias (2004)
  53. Sanchez R, Sali A (1997) Evaluation of comparative protein structure modeling by MODELLER-3. Proteins Suppl 1:50–58 (10.1002/(SICI)1097-0134(1997)1+<50::AID-PROT8>3.0.CO;2-S) / Proteins Suppl by R Sanchez (1997)
  54. Srinivasan N, Blundell TL (1993) An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng 6(5):501–512 (10.1093/protein/6.5.501) / Protein Eng by N Srinivasan (1993)
  55. Sanchez R, Sali A (1998) Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci USA 95(23):13597–13602 (10.1073/pnas.95.23.13597) / Proc Natl Acad Sci USA by R Sanchez (1998)
  56. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. Embo J 5(4):823–826 (10.1002/j.1460-2075.1986.tb04288.x) / Embo J by C Chothia (1986)
Dates
Type When
Created 7 years, 11 months ago (Sept. 11, 2017, 11:36 p.m.)
Deposited 5 years, 10 months ago (Oct. 3, 2019, 2:34 a.m.)
Indexed 4 days, 11 hours ago (Aug. 23, 2025, 9:51 p.m.)
Issued 8 years, 7 months ago (Jan. 1, 2017)
Published 8 years, 7 months ago (Jan. 1, 2017)
Published Online 7 years, 11 months ago (Sept. 13, 2017)
Published Print 8 years, 7 months ago (Jan. 1, 2017)
Funders 0

None

@inbook{Webb_2017, title={Protein Structure Modeling with MODELLER}, ISBN={9781493972319}, ISSN={1940-6029}, url={http://dx.doi.org/10.1007/978-1-4939-7231-9_4}, DOI={10.1007/978-1-4939-7231-9_4}, booktitle={Functional Genomics}, publisher={Springer New York}, author={Webb, Benjamin and Sali, Andrej}, year={2017}, pages={39–54} }