10.1007/978-1-4614-9068-5_7
Crossref book-chapter
Springer New York
Memristors and Memristive Systems (297)
Bibliography

Rana, V., & Waser, R. (2013). Redox-Based Memristive Devices. Memristors and Memristive Systems, 223–251.

Authors 2
  1. Vikas Rana (first)
  2. Rainer Waser (additional)
References 102 Referenced 0
  1. S. Lai, Flash memories: successes and challenges. IBM J. Res. Dev. 52, 529–535 (2008) (10.1147/rd.524.0529) / IBM J. Res. Dev. by S Lai (2008)
  2. G. Burr, B. Kurdi, J. Scott, C. Lam, K. Gopalakrishnan, R. Shenoy, Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008) (10.1147/rd.524.0449) / IBM J. Res. Dev. by G Burr (2008)
  3. S.A. Wolf, J. Lu, M.R. Stan, E. Chen, D.M. Treger, The promise of nanomagnetics and spintronics for future logic and universal memory. Proc. IEEE 98, 2155–2168 (2010) (10.1109/JPROC.2010.2064150) / Proc. IEEE by SA Wolf (2010)
  4. A. Sheikholeslami, P.G. Gulak, A survey of circuit innovations in ferroelectric random-access memories. Proc. IEEE 88, 667–689 (2000) (10.1109/5.849164) / Proc. IEEE by A Sheikholeslami (2000)
  5. W. Zhao, S. Chaudhuri, C. Accoto, J.-O. Klein, D. Ravelosona, C. Chappert, P. Mazoyer, High density spin-transfer torque (STT)-MRAM based on cross-point architecture, in 2012 4th IEEE International Memory Workshop (IMW) (2012), p. 4 (10.1109/IMW.2012.6213618)
  6. R. Waser (ed.), Nanoelectronics and Information Technology, 3rd edn. (Wiley-VCH, Berlin, 2012) / Nanoelectronics and Information Technology (2012)
  7. A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997) (10.1038/40363) / Nature by A Asamitsu (1997)
  8. M.N. Kozicki, M. Yun, L. Hilt, A. Singh, Applications of programmable resistance changes in metal-doped chalcogenide. J. Electrochem. Soc. 99–13, 298–309 (1999) / J. Electrochem. Soc. by M.N. Kozicki (1999)
  9. A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139–141 (2000) (10.1063/1.126902) / Appl. Phys. Lett. by A Beck (2000)
  10. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 33715-1–33715-10 (2005) / J. Appl. Phys. by BJ Choi (2005)
  11. Y.M. Kim, J.S. Lee, Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices. J. Appl. Phys. 104, 114115 (2008) (10.1063/1.3041475) / J. Appl. Phys. by YM Kim (2008)
  12. I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.-S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U.-I. Chung, I.T. Moon, Electron Devices Meeting, Technical Digest. IEEE International, pp. 587–590, 13–15 dec. (2004)
  13. Y. Wu, S. Yu, B. Lee, P. Wong, Low-power TiN/Al(2)O(3)/Pt resistive switching device with sub-20μA switching current and gradual resistance modulation. J. Appl. Phys. 110, 94104/1–94104/5 (2011) / J. Appl. Phys. by Y Wu (2011)
  14. L. Chen, Q.Q. Sun, J.J. Gu, Y. Xu, S.J. Ding, D.W. Zhang, Bipolar resistive switching characteristics of atomic layer deposited Nb2O5 thin films for nonvolatile memory application. Curr. Appl. Phys. 11, 849–852 (2011) (10.1016/j.cap.2010.12.005) / Curr. Appl. Phys. by L Chen (2011)
  15. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006) (10.1038/nmat1614) / Nat. Mater. by K Szot (2006)
  16. S.Q. Liu, N.J. Wu, A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000) (10.1063/1.126464) / Appl. Phys. Lett. by SQ Liu (2000)
  17. D. Morgan, M. Howes, Electroforming and switching in copper oxide films. Phys. Status Solidi (A) Appl. Res. 21, 191–195 (1974) (10.1002/pssa.2210210120) / Phys. Status Solidi (A) Appl. Res. by D Morgan (1974)
  18. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007) (10.1038/nmat2023) / Nat. Mater. by R Waser (2007)
  19. M.N. Kozicki, C. Gopalan, M. Balakrishnan, M. Park, M. Mitkova, Nonvolatile memory based on solid electrolytes, in 2004 Non-Volatile Memory Technology Symposium, Proceedings (2004), pp. 10–17
  20. S.-E. Ahn, M.-J. Lee, Y. Park, B.S. Kang, C.B. Lee, K.H. Kim, Write current reduction in transition metal oxide based resistance-change memory. Adv. Mater. 20, 924 (2008) (10.1002/adma.200702081) / Adv. Mater. by S-E Ahn (2008)
  21. B. Govoreanu, G.S. Kar, Y.-Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I.P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D.J. Wouters, J.A. Kittl, M. Jurczak, Electron Devices Meeting, Technical Digest. IEEE International, pp.31.6.1–31.6.4, 5–7 dec. (2011) (10.1109/IEDM.2011.6131652)
  22. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008) (10.1038/nnano.2008.160) / Nat. Nanotechnol. by JJ Yang (2008)
  23. S. Yu, X. Guan, H.P. Wong, Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model. Appl. Phys. Lett. 99, 063507–063507 (2011) (10.1063/1.3624472) / Appl. Phys. Lett. by S Yu (2011)
  24. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories-fundamentals, applications, prospects. Nanotechnology 22, 254003/1–254003/22 (2011) (10.1088/0957-4484/22/25/254003)
  25. S.G. Park, B. Magyari-Koepe, Y. Nishi, Impact of oxygen vacancy ordering on the formation of a conductive filament in TiO2 for resistive switching memory. IEEE Electron Device Lett. 32, 197–199 (2011) (10.1109/LED.2010.2091489) / IEEE Electron Device Lett. by SG Park (2011)
  26. F. Pan, C. Chen, Z. Wang, Y. Yang, J. Yang, F. Zeng, Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog. Nat. Sci. Mater. Int. 20, 1–15 (2010) (10.1016/S1002-0071(12)60001-X) / Prog. Nat. Sci. Mater. Int. by F Pan (2010)
  27. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009) (10.1002/adma.200900375) / Adv. Mater. by R Waser (2009)
  28. C. Rohde, B.J. Choi, D.S. Jeong, S.l. Choi, J. Zhao and C.S. Hwang, Identification of a determining parameter for resistive switching of TiO2 thin films, Appl. Phys. Lett. 86, 262907–09 (2005) (10.1063/1.1968416) / Appl. Phys. Lett. by C. Rohde (2005)
  29. S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.S. Kim, J.S. Choi, B.H. Park, Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655–5657 (2004) (10.1063/1.1831560) / Appl. Phys. Lett. by S Seo (2004)
  30. R. Waser, S. Menzel, R. Bruchhaus, Nanoelectronics and Information Technology, 3rd edn. (Wiley-VCH, Berlin, 2012) / Nanoelectronics and Information Technology by R Waser (2012)
  31. A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Interface resistance switching at a few nanometer thick perovskite manganite active layers. Appl. Phys. Lett. 88, 232112-1–232112-3 (2006) (10.1063/1.2211147) / Appl. Phys. Lett. by A Sawa (2006)
  32. G. Bersuker, D.C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafria, Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys. 110, 124518/1 (2011) (10.1063/1.3671565) / J. Appl. Phys. by G Bersuker (2011)
  33. A. Foster, A. Shluger, R. Nieminen, Mechanism of interstitial oxygen diffusion in hafnia. Phys. Rev. Lett. 89, 225901/1 (2002) (10.1103/PhysRevLett.89.225901) / Phys. Rev. Lett. by A Foster (2002)
  34. Y. Hirose, H. Hirose, Polarity-dependent memory switching and behaviour of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 47, 2767–2772 (1976) (10.1063/1.322942) / J. Appl. Phys. by Y Hirose (1976)
  35. C. Schindler, G. Staikov, R. Waser, Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 94, 072109/1–072109/3 (2009) (10.1063/1.3077310) / Appl. Phys. Lett. by C Schindler (2009)
  36. A. Chen, V.V. Zhirnov, J.A. Hutchby, C. Michael Garner, ITRS chapter: emerging research devices. Future Fab. Special ITRS Focus (44) (2013)
  37. A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008) (10.1016/S1369-7021(08)70119-6) / Mater. Today by A Sawa (2008)
  38. M.-J. Lee, Y. Park, B.-S. Kang, S.-E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.-H. Lee, S.-J. Chung, Y.-H. Kim, C.-S. Lee, J.-B. Park, I.-K. Yoo, Electron Devices Meeting, Technical Digest. IEEE International, pp. 771–774, 10–12 dec. (2007) (10.1109/IEDM.2007.4419061)
  39. G. Kar, A. Fantini, Y. Chen, V. Paraschiv, B. Govoreanu, H. Hody, N. Jossart, H. Tielens, S. Brus, O. Richard, T. Vandeweyer, D. Wouters, L. Altimime, M. Jurczak, Process-improved RRAM cell performance and reliability and paving the way for manufacturability and scalability for high density memory application, in Digest of Technical Papers – Symposium on VLSI Technology (2012), pp. 157–158 (10.1109/VLSIT.2012.6242509)
  40. E. Linn, R. Rosezin, C. Kügeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010) (10.1038/nmat2748) / Nat. Mater. by E Linn (2010)
  41. S. Tappertzhofen, E. Linn, L. Nielen, R. Rosezin, F. Lentz, R. Bruchhaus, I. Valov, U. Böttger, R. Waser, Capacity based nondestructive readout for complementary resistive switches. Nanotechnology 22, 395203/1–395203/7 (2011) (10.1088/0957-4484/22/39/395203) / Nanotechnology by S Tappertzhofen (2011)
  42. B.S. Kang, S.E. Ahn, M.J. Lee, G. Stefanovich, K.H. Kim, W.X. Xianyu, C.B. Lee, Y. Park, I.G. Baek, B.H. Park, High-current-density CuOx/InZnOx thin-film diodes for cross-point memory applications. Adv. Mater. 20, 3066–3069 (2008) (10.1002/adma.200702932) / Adv. Mater. by BS Kang (2008)
  43. M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C.B. Lee, D.H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, B.H. Park, Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 19, 3919–3923 (2007) (10.1002/adma.200700251) / Adv. Mater. by M-J Lee (2007)
  44. Q. Zuo, S. Long, Q. Liu, S. Zhang, Q. Wang, Y. Li, Y. Wang, M. Liu, Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory. J. Appl. Phys. 106, 73724/1–73724/5 (2009) / J. Appl. Phys. by Q Zuo (2009)
  45. M.-J. Lee, S. Seo, D.-C. Kim, S.-E. Ahn, D.H. Seo, I.-K. Yoo, A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories. Adv. Mater. 19, 73 (2007) (10.1002/adma.200601025) / Adv. Mater. by M-J Lee (2007)
  46. Q. Xia, J.J. Yang, W. Wu, X. Li, R.S. Williams, Self-aligned memristor cross-point arrays fabricated with one nanoimprint lithography step. Nano Lett. 10, 2909–2914 (2010) (10.1021/nl1017157) / Nano Lett. by Q Xia (2010)
  47. H. Lan, Y. Ding, Nanoimprint Lithography (InTech, 2010). Available from: http://www.intechopen.com/books/lithography/nanoimprintlithography (10.5772/8189)
  48. M. Meier, C. Nauenheim, S. Gilles, D. Mayer, C. Kuegeler, R. Waser, Nanoimprint for future non-volatile memory and logic devices. Microelectron. Eng. 85, 870–872 (2008) (10.1016/j.mee.2008.01.101) / Microelectron. Eng. by M Meier (2008)
  49. H.Y. Lee, P.S. Chen, T.Y. Wu, Y.S. Chen, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Chen, C.H. Lien, M.J. Tsai, Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM, in IEEE International Electron Devices Meeting 2008, Technical Digest (2008), pp. 297–300 (10.1109/IEDM.2008.4796677)
  50. M. Wu, Y. Lin, W. Jang, C. Lin, T. Tseng, Low-power and highly reliable multilevel operation in ZrO2 1T1R RRAM. IEEE Electron Device Lett. 32, 1026–1028 (2011) (10.1109/LED.2011.2157454) / IEEE Electron Device Lett. by M Wu (2011)
  51. W.C. Chien, Y.R. Chen, Y.C. Chen, A.T.H. Chuang, F.M. Lee, Y.Y. Lin, E.K. Lai, Y.H. Shih, K.Y. Hsieh, C.Y. Lu, A forming-free WOX resistive memory using a novel self-aligned field enhancement feature with excellent reliability and scalability, in 2010 International Electron Devices Meeting – Technical Digest (2010) (10.1109/IEDM.2010.5703390)
  52. Y. Dong, G. Yu, M. McAlpine, W. Lu, C. Lieber, Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett. 8, 386–391 (2008) (10.1021/nl073224p) / Nano Lett. by Y Dong (2008)
  53. K. Oka, T. Yanagida, K. Nagashima, T. Kawai, J. Kim, B. Park, Resistive-switching memory effects of NiO nanowire/metal junctions. J. Am. Chem. Soc. 132, 6634–6635 (2010) (10.1021/ja101742f) / J. Am. Chem. Soc. by K Oka (2010)
  54. S.I. Kim, J.H. Lee, Y.W. Chang, S.S. Hwang, K.-H. Yoo, Reversible resistive switching behaviors in NiO nanowires. Appl. Phys. Lett. 93, 033503–05 (2008) (10.1063/1.2958234) / Appl. Phys. Lett. by S.I. Kim (2008)
  55. Y. Chiang, W. Chang, C. Ho, C. Chen, C. Ho, S. Lin, T. Wu, J. He, Single-ZnO-nanowire memory. IEEE Trans. Electron Devices 58, 1735–1740 (2011) (10.1109/TED.2011.2121914) / IEEE Trans. Electron Devices by Y Chiang (2011)
  56. E. Herderick, J. Tresback, A. Vasiliev, N. Padture, Template-directed synthesis, characterization and electrical properties of Au-TiO2-Au heterojunction nanowires. Nanotechnology 18, 155204–09 (2007) (10.1088/0957-4484/18/15/155204) / Nanotechnology by E. Herderick (2007)
  57. C. Nauenheim, C. Kuegeler, A. Ruediger, R. Waser, Investigation of the electroforming process in resistively switching TiO2 nanocrosspoint junctions. Appl. Phys. Lett. 96, 122902 (2010) (10.1063/1.3367752) / Appl. Phys. Lett. by C Nauenheim (2010)
  58. K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, Y. Sugiyama, Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance. Appl. Phys. Lett. 93, 033506 (2008) (10.1063/1.2959065) / Appl. Phys. Lett. by K Kinoshita (2008)
  59. B. Butcher, S. Koveshnikov, D. Gilmer, G. Bersuker, M. Sung, A. Kalantarian, C. Park, R. Geer, Y. Nishi, P. Kirsch, R. Jammy, High endurance performance of 1T1R HfOx based RRAM at low (20μA) operative current and elevated (150°C) temperature, in IEEE International Integrated Reliability Workshop Final Report (2011), pp. 146–150
  60. Y. Wu, B. Lee, H. Wong, Al2O3-based RRAM using atomic layer deposition (ALD) with 1-μA RESET current. IEEE Electron Device Lett. 31, 1449–1451 (2010) (10.1109/LED.2010.2074177) / IEEE Electron Device Lett. by Y Wu (2010)
  61. W. Kim, S. Park, Z. Zhang, Y. Yang-Liauw, D. Sekar, H. Wong, S. Wong, Forming-free nitrogen-doped AlOX RRAM with sub-μA programming current, in Digest of Technical Papers – Symposium on VLSI Technology (2011), pp. 22–23
  62. L. Goux, A. Fantini, G. Kar, Y. Chen, N. Jossart, R. Degraeve, S. Clima, B. Govoreanu, G. Lorenzo, G. Pourtois, D. Wouters, J. Kittl, L. Altimime, M. Jurczak, Ultralow sub-500nA operating current high-performance TiN\Al2O3\HfO2\Hf\TiN bipolar RRAM achieved through understanding-based stack-engineering, in Digest of Technical Papers – Symposium on VLSI Technology (2012), pp. 159–160
  63. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 193–200 (2009) (10.1109/TED.2008.2010584) / IEEE Trans. Electron Devices by U Russo (2009)
  64. K. Kim, D.S. Jeong, C.S. Hwang, Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22, 254002 (2011) (10.1088/0957-4484/22/25/254002) / Nanotechnology by K Kim (2011)
  65. F. Nardi, S. Larentis, S. Balatti, D. Gilmer, D. Ielmini, Resistive switching by voltage-driven ion migration in bipolar RRAM. Part I: Experimental study. IEEE Trans. Electron Devices 59, 2461–2467 (2012) (10.1109/TED.2012.2202319) / IEEE Trans. Electron Devices by F Nardi (2012)
  66. D. Ielmini, Filamentary-switching model in RRAM for time, energy and scaling projections, in 2011 IEEE International Electron Devices Meeting – IEDM’11 (2011), pp. 17.2.1–17.2.4 (10.1109/IEDM.2011.6131571)
  67. S. Yu, H. Wong, A phenomenological model for the reset mechanism of metal oxide RRAM. IEEE Electron Device Lett. 31, 1455–1457 (2010) (10.1109/LED.2010.2078794) / IEEE Electron Device Lett. by S Yu (2010)
  68. H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012) (10.1109/JPROC.2012.2190369) / Proc. IEEE by H-SP Wong (2012)
  69. H. Schroeder, V.V. Zhirnov, R.K. Cavin, R. Waser, Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells. J. Appl. Phys. 107, 054517/1–054517/8 (2010) (10.1063/1.3319591) / J. Appl. Phys. by H Schroeder (2010)
  70. C. Hermes, Interaction between redox-based resistive switching mechanisms. Forschungszentrum Jülich GmbH 25, 134 (2013) / Forschungszentrum Jülich GmbH by C Hermes (2013)
  71. D.B. Strukov, R.S. Williams, Intrinsic constrains on thermally-assisted memristive switching. Appl. Phys. A Mater. Sci. Process. 102, 851–855 (2011) (10.1007/s00339-011-6269-4) / Appl. Phys. A Mater. Sci. Process. by DB Strukov (2011)
  72. Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, H. Horiba, H. Kumigashira, M. Oshima, Electron Devices Meeting, Technical Digest. IEEE International, pp. 1–4, 15–17 Dec. (2008) (10.1109/IEDM.2008.4796676)
  73. B. Gao, J. Kang, H. Zhang, B. Sun, B. Chen, L. Liu, X. Liu, R. Han, Y. Wang, B. Yu, Z. Fang, H. Yu, D. Kwong, Oxide-based RRAM: physical based retention projection, in 2010 Proceedings of the European Solid State Device Research Conference, ESSDERC 2010 (2010), pp. 392–395 (10.1109/ESSDERC.2010.5618200)
  74. Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, K. Aono, Retention model for high-density ReRAM, in 2012 4th IEEE International Memory Workshop, IMW 2012 (2012) (10.1109/IMW.2012.6213638)
  75. T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, K. Aono, Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation, in Digest of Technical Papers – Symposium on VLSI Technology (2012), pp. 73–74 (10.1109/VLSIT.2012.6242467)
  76. Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, K. Aono, Demonstration of high-density ReRAM ensuring 10-year retention at 85°C based on a newly developed reliability model, in Technical Digest – International Electron Devices Meeting, IEDM (2011), pp. 31.4.1–31.4.4 (10.1109/IEDM.2011.6131650)
  77. X.T. Zhang, Q.X. Yu, Y.P. Yao, X.G. Li, Ultrafast resistive switching in SrTiO3:Nb single crystal. Appl. Phys. Lett. 97, 222117/1–222117/3 (2010) / Appl. Phys. Lett. by XT Zhang (2010)
  78. C. Hermes, M. Wimmer, S. Menzel, K. Fleck, G. Bruns, M. Salinga, U. Boettger, R. Bruchhaus, T. Schmitz-Kempen, M. Wuttig, R. Waser, Analysis of transient currents during ultra fast switching of TiO2 nanocrossbar devices. IEEE Electron Device Lett. 32, 1116–1118 (2011) (10.1109/LED.2011.2156377) / IEEE Electron Device Lett. by C Hermes (2011)
  79. H. Lee, Y. Chen, P. Chen, P. Gu, Y. Hsu, S. Wang, W. Liu, C. Tsai, S. Sheu, P. Chiang, W. Lin, C. Lin, W. Chen, F. Chen, C. Lien, and M. Tsai, Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance, in Technical Digest – International Electron Devices Meeting, IEDM (2010), pp. 19.7.1–19.7.4 (10.1109/IEDM.2010.5703395)
  80. S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv. Funct. Mater. 21, 4487–4492 (2011) (10.1002/adfm.201101117) / Adv. Funct. Mater. by S Menzel (2011)
  81. A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22, 485203/1–485203/7 (2011) (10.1088/0957-4484/22/48/485203) / Nanotechnology by AC Torrezan (2011)
  82. B. Chen, Y. Lu, B. Gao, Y.H. Fu, F.F. Zhang, P. Huang, Y.S. Chen, L.F. Liu, X.Y. Liu, J.F. Kang, Y.Y. Wang, Z. Fang, H.Y. Yu, X. Li, X.P. Wang, N. Singh, G.Q. Lo, D.L. Kwong, Physical mechanisms of endurance degradation in TMO-RRAM, in 2011 IEEE International Electron Devices Meeting (IEDM) (2011) (10.1109/IEDM.2011.6131539)
  83. I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013) (10.1038/ncomms2784) / Nat. Commun. by I Valov (2013)
  84. H.Y. Lee, Y.S. Chen, P.S. Chen, P.Y. Gu, Y.Y. Hsu, S.M. Wang, W.H. Liu, C.H. Tsai, S.S. Sheu, P.C. Chiang, W.P. Lin, C.H. Lin, W.S. Chen, F.T. Chen, C.H. Lien, M. Tsai, Evidence and solution of Over-RESET Problem for HfOX based resistive memory with sub-ns switching speed and high endurance, in 2010 International Electron Devices Meeting – Technical Digest (2010) (10.1109/IEDM.2010.5703395)
  85. Y. Chen, B. Govoreanu, L. Goux, R. Degraeve, A. Fantini, G. Kar, D. Wouters, G. Groeseneken, J. Kittl, M. Jurczak, L. Altimime, Balancing SET/RESET pulse for >1010 endurance in HfO2 1T1R bipolar RRAM. IEEE Trans. Electron Devices 59, 3243–3249 (2012) (10.1109/TED.2012.2218607) / IEEE Trans. Electron Devices by Y Chen (2012)
  86. W.-C. Chien, M.-H. Lee, F.-M. Lee, Y.-Y. Lin, H.-L. Lung, K.-Y. Hsieh, C.-Y. Lu, A multi-level 40nm WOX resistive memory with excellent reliability, in 2011 IEEE International Electron Devices Meeting – IEDM’11 (2011) (10.1109/IEDM.2011.6131651)
  87. Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, M. Liu, Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology 21, 45202/1–45202/6 (2010) / Nanotechnology by Y Wang (2010)
  88. J. Park, K.P. Biju, S. Jung, W. Lee, J. Lee, S. Kim, S. Park, J. Shin, H. Hwang, Multibit operation of TiOx-based ReRAM by schottky barrier height engineering. IEEE Electron Device Lett. 32, 476–478 (2011) (10.1109/LED.2011.2109032) / IEEE Electron Device Lett. by J Park (2011)
  89. M. Terai, Y. Sakotsubo, S. Kotsuji, H. Hada, Resistance controllability of Ta2O5/TiO2 stack ReRAM for low-voltage and multilevel operation. IEEE Electron Device Lett. 31, 204–206 (2010) (10.1109/LED.2009.2039021) / IEEE Electron Device Lett. by M Terai (2010)
  90. S. Yu, Y. Wu, H. Wong, Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Appl. Phys. Lett. 98, 103514/1–103514/3 (2011) / Appl. Phys. Lett. by S Yu (2011)
  91. S. Lee, Y. Kim, M. Chang, K. Kim, C. Lee, J. Hur, G. Park, D. Lee, M. Lee, C. Kim, U. Chung, I. Yoo, K. Kim, Multi-level switching of triple-layered TaOx RRAM with excellent reliability for storage class memory, in Digest of Technical Papers – Symposium on VLSI Technology (2012), pp. 71–72 (10.1109/VLSIT.2012.6242466)
  92. V.V. Zhirnov, R. Meade, R.K. Cavin, G. Sandhu, Scaling limits of resistive memories. Nanotechnology 22, 254027/1–254027/21 (2011) (10.1088/0957-4484/22/25/254027) / Nanotechnology by VV Zhirnov (2011)
  93. L. Goux, J.G. Lisoni, X.P. Wang, M. Jurczak, D.J. Wouters, Optimized Ni oxidation in 80-nm contact holes for integration of forming-free and low power Ni/NiO/Ni memory cells. IEEE Trans. Electron Devices 56, 2363 (2009) (10.1109/TED.2009.2028378) / IEEE Trans. Electron Devices by L Goux (2009)
  94. C. Nauenheim, Integration of resistive switching devices in crossbar structures, Phd thesis, Forschungszentrum Jlich GmbH (2009)
  95. B. Lee, H. Wong, NiO resistance change memory with a novel structure for 3D integration and improved confinement of conduction path, in 2009 Symposium on VLSI Technology, Digest of Technical Papers (2009), pp. 28–29
  96. D. Ielmini, F. Nardi, C. Cagli, Universal reset characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Trans. Electron Devices 58, 1–8 (2011) (10.1109/TED.2011.2160325) / IEEE Trans. Electron Devices by D Ielmini (2011)
  97. S. Tanachutiwat, M. Liu, W. Wang, FPGA based on integration of CMOS and RRAM. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 19, 2023–2032 (2011) (10.1109/TVLSI.2010.2063444) / IEEE Trans. Very Large Scale Integration (VLSI) Syst. by S Tanachutiwat (2011)
  98. K. Seo, I. Kim, S. Jung, M. Jo, S. Park, J. Park, J. Shin, K.P. Biju, J. Kong, K. Lee, B. Lee, H. Hwang, Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology 22, 254023 (2011) (10.1088/0957-4484/22/25/254023) / Nanotechnology by K Seo (2011)
  99. T. Chang, S. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5, 7669–7676 (2011) (10.1021/nn202983n) / ACS Nano by T Chang (2011)
  100. S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, H.P. Wong, An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices 58, 2729–2737 (2011) (10.1109/TED.2011.2147791) / IEEE Trans. Electron Devices by S Yu (2011)
  101. G.S. Snider, Spike-timing-dependent learning in memristive nanodevices, in IEEE International Symposium on Nanoscale Architectures (2008), pp. 85–92 (10.1109/NANOARCH.2008.4585796)
  102. H. Jeong, Y. Kim, J. Lee, S. Choi, A low-temperature-grown TiO2-based device for the flexible stacked RRAM application. Nanotechnology 21, 115203 (2010) (10.1088/0957-4484/21/11/115203) / Nanotechnology by H Jeong (2010)
Dates
Type When
Created 11 years, 8 months ago (Dec. 6, 2013, 5:46 a.m.)
Deposited 4 months ago (April 30, 2025, 10:49 p.m.)
Indexed 4 months ago (May 1, 2025, 12:10 p.m.)
Issued 11 years, 9 months ago (Nov. 7, 2013)
Published 11 years, 9 months ago (Nov. 7, 2013)
Published Online 11 years, 9 months ago (Nov. 7, 2013)
Published Print 11 years, 8 months ago (Jan. 1, 2014)
Funders 0

None

@inbook{Rana_2013, title={Redox-Based Memristive Devices}, ISBN={9781461490685}, url={http://dx.doi.org/10.1007/978-1-4614-9068-5_7}, DOI={10.1007/978-1-4614-9068-5_7}, booktitle={Memristors and Memristive Systems}, publisher={Springer New York}, author={Rana, Vikas and Waser, Rainer}, year={2013}, month=nov, pages={223–251} }