Crossref book-chapter
Springer New York
Springer Series in Statistics (297)
Bibliography

Efron, B. (1992). Bootstrap Methods: Another Look at the Jackknife. Breakthroughs in Statistics, 569–593.

Authors 1
  1. Bradley Efron (first)
References 17 Referenced 640
  1. Anderson, T.W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York. / An Introduction to Multivariate Statistical Analysis by TW Anderson (1958)
  2. Barnard. G. (1974) Conditionality. pivotals, and robust estimation. Proceedings of the Conference on Foundational Questions in Statistical Inference. Memoirs No. 1. Dept. of Theoretical Statist., Univ. of Aarhus. Denmark. / Proceedings of the Conference on Foundational Questions in Statistical Inference by G Barnard (1974)
  3. Cramér, H. (1946). Mathematical Methods in Statistics. Princeton Univ. Press. / Mathematical Methods in Statistics by H Cramér (1946)
  4. Gray, H., Schucany. W. and Watkins, T. (1975). On the generalized jackknifc and its relation to statistical differentials. Biometrika 62 637–642. / On the generalized jackknifc and its relation to statistical differentials. Biometrika by H Gray (1975)
  5. Hartigan, J.A. (1969). Using subsamplc values as typical values. J. Amer. Statist. Assoc. 64 1303–1317. (10.2307/2286069) / J. Amer. Statist. Assoc. by JA Hartigan (1969)
  6. Hartigan, J.A. (1971). Error analysis by replaced samples. J. Roy. Statist. Soc. Ser. B 33 98–110. (10.1111/j.2517-6161.1971.tb00861.x) / J. Roy. Statist. Soc. Ser. B by JA Hartigan (1971)
  7. Hartigan, J.A. (1975). Necessary and sufficient conditions for asymptotic joint normality of a statistic and its subsample values. Ann. Statist. 3 573–580. (10.1214/aos/1176343123) / Ann. Statist. by JA Hartigan (1975)
  8. Hinkley, D. (1976a). On estimating a symmetric distribution. Biometrika 63 680. (10.1093/biomet/63.3.680) / Biometrika by D Hinkley (1976)
  9. Hinkley. D. (1976b). On jackknifing in unbalanced situations. Technical Report No. 22, Division of Biostatistics. Stanford Univ. / On jackknifing in unbalanced situations. Technical Report No. 22, Division of Biostatistics by D Hinkley (1976)
  10. Jaeckel. L (1972). The infinitesimal jackknifc. Bell Laboratories Memorandum #MM 72–1215–11. / Bell Laboratories Memorandum #MM 72–1215–11 by L Jaeckel (1972)
  11. Kendall. M. and Stuart, A. (1950). The Advanced Theory of Statistics. Hafner, New York. / The Advanced Theory of Statistics by M Kendall (1950)
  12. Lachenbruch. P. and Mickey, R. (1968). Estimation of error rates in discriminant analysis. Technometrics 10 1–11. (10.2307/1266219) / Technometrics by P Lachenbruch (1968)
  13. Maritz, J.S. and Jarrett, R.G. (1978). A note on estimating the variance of the sample median. J. Amer. Statist. Assoc. 73 194–196. (10.2307/2286545) / J. Amer. Statist. Assoc. by JS Maritz (1978)
  14. Miller. R.G. (1974a). The jackknife—a review. Biometrika 61 1–15. / Biometrika by RG Miller (1974)
  15. Miller, R.G. (1974b). An unbalanced jackknife. Ann. Statist. 2 880–891. (10.1214/aos/1176342811) / Ann. Statist. by RG Miller (1974)
  16. Noether. G. (1967). Elements of Nonparametric Statistics. Wiley, New York. / Elements of Nonparametric Statistics by G Noether (1967)
  17. Toussaint, G. (1974). Bibliography on estimation of misclassification. IEEE Trans. Information Theory 20 472–479. (10.1109/TIT.1974.1055260) / IEEE Trans. Information Theory by G Toussaint (1974)
Dates
Type When
Created 13 years, 10 months ago (Oct. 5, 2011, 1:20 a.m.)
Deposited 5 months, 1 week ago (March 12, 2025, 8:58 a.m.)
Indexed 2 days ago (Aug. 23, 2025, 9:16 p.m.)
Issued 33 years, 7 months ago (Jan. 1, 1992)
Published 33 years, 7 months ago (Jan. 1, 1992)
Published Print 33 years, 7 months ago (Jan. 1, 1992)
Funders 0

None

@inbook{Efron_1992, title={Bootstrap Methods: Another Look at the Jackknife}, ISBN={9781461243809}, ISSN={0172-7397}, url={http://dx.doi.org/10.1007/978-1-4612-4380-9_41}, DOI={10.1007/978-1-4612-4380-9_41}, booktitle={Breakthroughs in Statistics}, publisher={Springer New York}, author={Efron, Bradley}, year={1992}, pages={569–593} }