Crossref book-chapter
Springer New York
Advances in Experimental Medicine and Biology (297)
Bibliography

Dubrac, S., & Msadek, T. (n.d.). Tearing Down the Wall: Peptidoglycan Metabolism and the WalK/WalR (YycG/YycF) Essential Two-Component System. Bacterial Signal Transduction: Networks and Drug Targets, 214–228.

Authors 2
  1. Sarah Dubrac (first)
  2. Tarek Msadek (additional)
References 72 Referenced 51
  1. Inouye M, Dutta R, eds. Histidine kinases in signal transduction. San Diego: Academic Press; 2003. / Histidine kinases in signal transduction (2003)
  2. Hoch JA, Silhavy TJ. Two-component signal transduction. Washington, DC: ASM Press; 1995. (10.1128/9781555818319) / Two-component signal transduction by J.A. Hoch (1995)
  3. Ausmees N, Jacobs-Wagner C. Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Annu Rev Microbiol 2003; 57:225–247. (10.1146/annurev.micro.57.030502.091006) / Annu Rev Microbiol by N. Ausmees (2003)
  4. Skerker JM, Prasol MS, Perchuk BS et al. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 2005; 3:e334. (10.1371/journal.pbio.0030334) / PLoS Biol by J.M. Skerker (2005)
  5. Zahrt TC, Deretic V. An essential two-component signal transduction system in Mycobacterium tuberculosis. J Bacteriol 2000; 182:3832–3838. (10.1128/JB.182.13.3832-3838.2000) / J Bacteriol by T.C. Zahrt (2000)
  6. Fol M, Chauhan A, Nair NK et al. Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol Microbiol 2006; 60:643–657. (10.1111/j.1365-2958.2006.05137.x) / Mol Microbiol by M. Fol (2006)
  7. Fukuchi K, Kasahara Y, Asai K et al. The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology 2000; 146:1573–1583. (10.1099/00221287-146-7-1573) / Microbiology by K. Fukuchi (2000)
  8. Fabret C, Hoch JA. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 1998; 180:6375–6383. (10.1128/JB.180.23.6375-6383.1998) / J Bacteriol by C. Fabret (1998)
  9. Martin PK, Li T, Sun D et al. Role in cell permeability of an essential two-component system in Staphylococcus aureus. J Bacteriol 1999; 181:3666–3673. (10.1128/JB.181.12.3666-3673.1999) / J Bacteriol by P.K. Martin (1999)
  10. Dubrac S, Msadek T. Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus. J Bacteriol 2004; 186:1175–1181. (10.1128/JB.186.4.1175-1181.2004) / J Bacteriol by S. Dubrac (2004)
  11. Throup JP, Koretke KK, Bryant AP et al. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol 2000; 35:566–576. (10.1046/j.1365-2958.2000.01725.x) / Mol Microbiol by J.P. Throup (2000)
  12. Lange R, Wagner C, de Saizieu A et al. Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene 1999; 237:223–234. (10.1016/S0378-1119(99)00266-8) / Gene by R. Lange (1999)
  13. Echenique JR, Trombe MC. Competence repression under oxygen limitation through the two-component MicAB signal-transducing system in Streptococcus pneumoniae and involvement of the PAS domain of MicB. J Bacteriol 2001; 183:4599–4608. (10.1128/JB.183.15.4599-4608.2001) / J Bacteriol by J.R. Echenique (2001)
  14. Senadheera MD, Guggenheim B, Spatafora GA et al. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB and ftf expression, biofilm formation and genetic competence development. J Bacteriol 2005; 187:4064–4076. (10.1128/JB.187.12.4064-4076.2005) / J Bacteriol by M.D. Senadheera (2005)
  15. Liu M, Hanks TS, Zhang J et al. Defects in ex vivo and in vivo growth and sensitivity to osmotic stress of group A Streptococcus caused by interruption of response regulator gene vicR. Microbiology 2006; 152:967–978. (10.1099/mic.0.28706-0) / Microbiology by M. Liu (2006)
  16. Kallipolitis BH, Ingmer H. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol Lett 2001; 204:111–115. (10.1111/j.1574-6968.2001.tb10872.x) / FEMS Microbiol Lett by B.H. Kallipolitis (2001)
  17. Hancoek LE, Perego M. Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J Bacteriol 2004; 186:7951–7958. (10.1128/JB.186.23.7951-7958.2004) / J Bacteriol by L.E. Hancoek (2004)
  18. Qin Z, Zhang J, Xu B et al. Structure-based discovery of inhibitors of the YycG histidine kinase: new chemical leads to combat Staphylococcus epidermidis infections. BMC Microbiol 2006; 6:96. (10.1186/1471-2180-6-96) / BMC Microbiol by Z. Qin (2006)
  19. Dubrac S, Boneca IG, Poupel O et al. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol 2007; 189:8257–8269. (10.1128/JB.00645-07) / J Bacteriol by S. Dubrac (2007)
  20. Bisicchia P, Noone D, Lioliou E et al. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 2007; 65:180–200. (10.1111/j.1365-2958.2007.05782.x) / Mol Microbiol by P. Bisicchia (2007)
  21. Ng WL, Robertson GT, Kazmierczak KM et al. Constitutive expression of PcsB suppresses the requirement for the essential VicR (YycF) response regulator in Streptococcus pneumoniae R6. Mol Microbiol 2003; 50:1647–1663. (10.1046/j.1365-2958.2003.03806.x) / Mol Microbiol by W.L. Ng (2003)
  22. Ng WL, Kazmierczak KM, Winkler ME. Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Mol Microbiol 2004; 53:1161–1175. (10.1111/j.1365-2958.2004.04196.x) / Mol Microbiol by W.L. Ng (2004)
  23. Dubrac S, Bisicchia P, Devine K et al. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) regulon. (Submitted for publication) 2008 (10.1111/j.1365-2958.2008.06483.x)
  24. Szurmant H, Nelson K, Kim EJ et al. YycH regulates the activity of the essential YycFG two-component system in Bacillus subtilis. J Bacteriol 2005; 187:5419–5426. (10.1128/JB.187.15.5419-5426.2005) / J Bacteriol by H. Szurmant (2005)
  25. Szurmant H, Mohan MA, Imus PM et al. YycH and YycI interact to regulate the essential YycFG two-component system in Bacillus subtilis. J Bacteriol 2007; 189:3280–3289. (10.1128/JB.01936-06) / J Bacteriol by H. Szurmant (2007)
  26. Szurmant H, Zhao H, Mohan MA et al. The crystal structure of YycH involved in the regulation of the essential YycFG two-component system in Bacillus subtilis reveals a novel tertiary structure. Protein Sci 2006; 15:929–934. (10.1110/ps.052064406) / Protein Sci by H. Szurmant (2006)
  27. Santelli E, Liddington RC, Mohan MA et al. The crystal structure of Bacillus subtilis YycI reveals a common fold for two members of an unusual class of sensor histidine kinase regulatory proteins. J Bacteriol 2007; 189:3290–3295. (10.1128/JB.01937-06) / J Bacteriol by E. Santelli (2007)
  28. Daivasu H, Osaka K, Ishino Y et al. Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett 2001; 503:1–6. (10.1016/S0014-5793(01)02686-2) / FEBS Lett by H. Daivasu (2001)
  29. Ng WL, Winkler ME. Singular structures and operon organizations of essential two-component systems in species of Streptococcus. Microbiology 2004; 150:3096–3098. (10.1099/mic.0.27550-0) / Microbiology by W.L. Ng (2004)
  30. Wagner C, Saizieu Ad A, Schonfeld HJ et al. Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon. Infect Immun 2002; 70:6121–6128. (10.1128/IAI.70.11.6121-6128.2002) / Infect Immun by C. Wagner (2002)
  31. Senadheera MD, Lee AW, Hung DC et al. The Streptococcus mutans vicX Gene Product Modulates gtfB/C Expression, Biofilm Formation, Genetic Competence and Oxidative Stress Tolerance. J Bacteriol 2007; 189:1451–1458. (10.1128/JB.01161-06) / J Bacteriol by M.D. Senadheera (2007)
  32. Noone D, Howell A, Collery R et al. YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. J Bacteriol 2001; 183:654–663. (10.1128/JB.183.2.654-663.2001) / J Bacteriol by D. Noone (2001)
  33. Clausen T, Southan C, Ehrmann M. The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 2002; 10:443–455. (10.1016/S1097-2765(02)00658-5) / Mol Cell by T. Clausen (2002)
  34. Stack HM, Sleator RD, Bowers M et al. Role for HtrA in stress induction and virulence potential in Listeria monocytogenes. Appl Environ Microbiol 2005; 71:4241–4247. (10.1128/AEM.71.8.4241-4247.2005) / Appl Environ Microbiol by H.M. Stack (2005)
  35. Taylor BL, Zhulin IB. PAS domains: internal sensors of oxygen, redox potential and light. Microbiol Mol Biol Rev 1999; 63:479–506. (10.1128/MMBR.63.2.479-506.1999) / Microbiol Mol Biol Rev by B.L. Taylor (1999)
  36. Ulrich LE, Zhulin IB. MiST: a microbial signal transduction database. Nucleic Acids Res 2007; 35:D386–390. (10.1093/nar/gkl932) / Nucleic Acids Res by L.E. Ulrich (2007)
  37. Clausen VA, Bae W, Throup J et al. Biochemical characterization of the first essential two-component signal transduction system from Staphylococcus aureus and Streptococcus pneumoniae. J Mol Microbiol Biotechnol 2003; 5:252–260. (10.1159/000071077) / J Mol Microbiol Biotechnol by V.A. Clausen (2003)
  38. Depardieu F, Courvalin P, Msadek T. A six amino acid deletion, partially overlapping the VanSB G2 ATP-binding motif, leads to constitutive glycopeptide resistance in VanB-type Enterococcus faecium. Mol Microbiol 2003; 50:1069–1083. (10.1046/j.1365-2958.2003.03771.x) / Mol Microbiol by F. Depardieu (2003)
  39. Alves R, Savageau MA. Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological function. Mol Microbiol 2003; 48:25–51. (10.1046/j.1365-2958.2003.03344.x) / Mol Microbiol by R. Alves (2003)
  40. Howell A, Dubrac S, Andersen KK et al. Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Mol Microbiol 2003; 49:1639–1655. (10.1046/j.1365-2958.2003.03661.x) / Mol Microbiol by A. Howell (2003)
  41. O’Connell-Motherway M, van Sinderen D, Morel-Deville F et al. Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363. Microbiology 2000; 146:935–947. (10.1099/00221287-146-4-935) / Microbiology by M. O’Connell-Motherway (2000)
  42. Mascher T, Helmann JD, Unden G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 2006; 70:910–938. (10.1128/MMBR.00020-06) / Microbiol Mol Biol Rev by T. Mascher (2006)
  43. Mizuno T, Tanaka I. Structure of the DNA-binding domain of the OmpR family of response regulators. Molecular Microbiology 1997; 24:665–667. (10.1046/j.1365-2958.1997.3571723.x) / Molecular Microbiology by T. Mizuno (1997)
  44. Martinez-Hackert E, Stock AM. Structural relationships in the OmpR family of winged-helix transcription factors. J Mol Biol; 1997; 269:301–312. (10.1006/jmbi.1997.1065) / J Mol Biol by E. Martinez-Hackert (1997)
  45. Martinez-Hackert E, Stock AM. The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. Structure 1997; 5:109–124. (10.1016/S0969-2126(97)00170-6) / Structure by E. Martinez-Hackert (1997)
  46. Blanco AG, Sola M, Gomis-Ruth FX et al. Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator. Structure 2002; 10:701–713. (10.1016/S0969-2126(02)00761-X) / Structure by A.G. Blanco (2002)
  47. Makino K, Amemura M, Kawamoto T et al. DNA binding of PhoB and its interaction with RNA polymerase. J Mol Biol 1996; 259:15–26. (10.1006/jmbi.1996.0298) / J Mol Biol by K. Makino (1996)
  48. Trinh CH, Liu Y, Phillips SE et al. Structure of the response regulator VicR DNA-binding domain. Acta Crystallogr D Biol Crystallogr 2007; 63:266–269. (10.1107/S0907444906043435) / Acta Crystallogr D Biol Crystallogr by C.H. Trinh (2007)
  49. Ng WL, Tsui HC, Winkler ME. Regulation of the pspA virulence factor and essential pcsB murein biosynthetic genes by the phosphorylated VicR (YycF) response regulator in Streptococcus pneumoniae. J Bacteriol 2005; 187:7444–7459. (10.1128/JB.187.21.7444-7459.2005) / J Bacteriol by W.L. Ng (2005)
  50. Howell A, Dubrac S, Noone D et al. Interactions between the YycFG and PhoPR two-component systems in Bacillus subtilis: the PhoR kinase phosphorylates the noncognate YycF response regulator upon phosphate limitation. Mol Microbiol 2006; 59:1199–1215. (10.1111/j.1365-2958.2005.05017.x) / Mol Microbiol by A. Howell (2006)
  51. Lee SF, Delaney GD, Elkhateeb M. A two-component covRS regulatory system regulates expression of fructosyltransferase and a novel extracellular carbohydrate in Streptococcus mutans. Infect Immun 2004; 72:3968–3973. (10.1128/IAI.72.7.3968-3973.2004) / Infect Immun by S.F. Lee (2004)
  52. Stapleton MR, Horsburgh MJ, Hayhurst EJ et al. Characterization of IsaA and SceD, two putative lytic transglycosylases of Staphylococcus aureus. J Bacteriol 2007; 189:7316–7325. (10.1128/JB.00734-07) / J Bacteriol by M.R. Stapleton (2007)
  53. Ahn SJ, Burne RA. Effects of oxygen on biofilm formation and the AtlA autolysin of Streptococcus mutans. J Bacteriol 2007; 189:6293–6302. (10.1128/JB.00546-07) / J Bacteriol by S.J. Ahn (2007)
  54. Mohedano ML, Overweg K, de la Fuente A et al. Evidence that the essential response regulator YycF in Streptococcus pneumoniae modulates expression of fatty acid biosynthesis genes and alters membrane composition. J Bacteriol 2005; 187:2357–2367. (10.1128/JB.187.7.2357-2367.2005) / J Bacteriol by M.L. Mohedano (2005)
  55. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE et al. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 2001; 20:1681–1691. (10.1093/emboj/20.7.1681) / EMBO J by P.S. Aguilar (2001)
  56. Deng DM, Liu MJ, ten Cate JM et al. The VicRK system of Streptococcus mutans responds to oxidative stress. J Dent Res 2007; 86:606–610. (10.1177/154405910708600705) / J Dent Res by D.M. Deng (2007)
  57. Ramadurai L, Jayaswal RK. Molecular cloning, sequencing and expression of lytM, a unique autolytic gene of Staphylococcus aureus. J Bacteriol 1997; 179:3625–3631. (10.1128/jb.179.11.3625-3631.1997) / J Bacteriol by L. Ramadurai (1997)
  58. Sakata N, Mukai T. Production profile of the soluble lytic transglycosylase homologue in Staphylococcus aureus during bacterial proliferation. FEMS Immunol Med Microbiol 2007; 49:288–295. (10.1111/j.1574-695X.2006.00200.x) / FEMS Immunol Med Microbiol by N. Sakata (2007)
  59. Shemesh M, Tam A, Feldman M et al. Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydr Res 2006; 341:2090–2097. (10.1016/j.carres.2006.05.010) / Carbohydr Res by M. Shemesh (2006)
  60. Martin PK, Bao Y, Boyer E et al. Novel locus required for expression of high-level macrolide-lincosamide-streptogramin B resistance in Staphylococcus aureus. J Bacteriol 2002; 184:5810–5813. (10.1128/JB.184.20.5810-5813.2002) / J Bacteriol by P.K. Martin (2002)
  61. Friedman L, Alder JD, Silverman JA. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50:2137–2145. (10.1128/AAC.00039-06) / Antimicrob Agents Chemother by L. Friedman (2006)
  62. Jansen A, Turck M, Szekat C et al. Role of insertion elements and yycFG in the development of decreased susceptibility to vancomycin in Staphylococcus aureus. Int J Med Microbiol 2007; 297:205–215. (10.1016/j.ijmm.2007.02.002) / Int J Med Microbiol by A. Jansen (2007)
  63. Mwangi MM, Wu SW, Zhou Y et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci USA 2007; 104:9451–9456. (10.1073/pnas.0609839104) / Proc Natl Acad Sci USA by M.M. Mwangi (2007)
  64. Kadioglu A, Echenique J, Manco S et al. The MicAB two-component signaling system is involved in virulence of Streptococcus pneumoniae. Infect Immun 2003; 71:6676–6679. (10.1128/IAI.71.11.6676-6679.2003) / Infect Immun by A. Kadioglu (2003)
  65. Brown JS, Gilliland SM, Holden DW. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol 2001; 40:572–585. (10.1046/j.1365-2958.2001.02414.x) / Mol Microbiol by J.S. Brown (2001)
  66. Ren B, McCrory MA, Pass C et al. The virulence function of Streptococcus pneumoniae surface protein A involves inhibition of complement activation and impairment of complement receptor-mediated protection. J Immunol 2004; 173:7506–7512. (10.4049/jimmunol.173.12.7506) / J Immunol by B. Ren (2004)
  67. Ren B, Szalai AJ, Hollingshead SK et al. Effects of PspA and antibodies to PspA on activation and deposition of complement on the pneumococcal surface. Infect Immun 2004; 72:114–122. (10.1128/IAI.72.1.114-122.2004) / Infect Immun by B. Ren (2004)
  68. Munro C, Michalek SM, Macrina FL. Cariogenicity of Streptococcus mutans V403 glucosyltransferase and fructosyltransferase mutants constructed by allelic exchange. Infect Immun 1991; 59:2316–2323. (10.1128/IAI.59.7.2316-2323.1991) / Infect Immun by C. Munro (1991)
  69. Yamamoto K, Kitayama T, Minagawa S et al. Antibacterial agents that inhibit histidine protein kinase YycG of Bacillus subtilis. Biosci Biotechnol Biochem 2001; 65:2306–2310. (10.1271/bbb.65.2306) / Biosci Biotechnol Biochem by K. Yamamoto (2001)
  70. Hilliard JJ, Goldschmidt RM, Licata L et al. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrob Agents Chemother 1999; 43:1693–1699. (10.1128/AAC.43.7.1693) / Antimicrob Agents Chemother by J.J. Hilliard (1999)
  71. Furuta E, Yamamoto K, Tatebe D et al. Targeting protein homodimerization: a novel drug discovery system. FEBS Lett 2005; 579:2065–2070. (10.1016/j.febslet.2005.02.056) / FEBS Lett by E. Furuta (2005)
  72. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680. (10.1093/nar/22.22.4673) / Nucleic Acids Res by J.D. Thompson (1994)
Dates
Type When
Created 16 years, 9 months ago (Dec. 4, 2008, 1:05 a.m.)
Deposited 4 years, 9 months ago (Nov. 17, 2020, 12:28 p.m.)
Indexed 1 month, 2 weeks ago (July 24, 2025, 7:14 a.m.)
Funders 0

None

@inbook{Dubrac, title={Tearing Down the Wall: Peptidoglycan Metabolism and the WalK/WalR (YycG/YycF) Essential Two-Component System}, ISBN={9780387788852}, ISSN={0065-2598}, url={http://dx.doi.org/10.1007/978-0-387-78885-2_15}, DOI={10.1007/978-0-387-78885-2_15}, booktitle={Bacterial Signal Transduction: Networks and Drug Targets}, publisher={Springer New York}, author={Dubrac, Sarah and Msadek, Tarek}, pages={214–228} }